sábado, 26 de maio de 2012

PCMSO - PERGUNTAS E RESPOSTAS


Qual o objetivo do PCMSO?
Promoção e preservação da saúde do conjunto dos seus trabalhadores.

O que a NR 7 estabelece?
Os parâmetros mínimos e diretrizes gerais a serem observados na execução do PCMSO.

Empresa utiliza em seu estabelecimento trabalhadores de empresa locadora de serviços de mão de obra.
A contratada terá de elaborar um PCMSO referente a esse estabelecimento?
- Sim.
A contratante tem alguma responsabilidade sobre a elaboração e implementação do PCMSO da contratada?
- Caberá à empresa contratante de mão de obra prestadora de serviços informar a empresa contratada dos riscos existentes e auxiliar na elaboração e implementação do PCMSO nos locais de trabalho onde os serviços estão sendo prestados.

Que diretrizes todo PCMSO deve observar?
7.2.1 O PCMSO é parte integrante do conjunto mais amplo de iniciativas da empresa no campo da saúde dos trabalhadores, devendo estar articulado com o disposto nas demais NR.
7.2.2 O PCMSO deverá considerar as questões incidentes sobre o indivíduo e a coletividade de trabalhadores, privilegiando o instrumental clínico-epidemiológico na abordagem da relação entre sua saúde e o trabalho.
7.2.3 O PCMSO deverá ter caráter de prevenção, rastreamento e diagnóstico precoce dos agravos à saúde relacionados ao trabalho, inclusive de natureza subclínica, além da constatação da existência de casos de doenças profissionais ou danos irreversíveis à saúde dos trabalhadores.
7.2.4 O PCMSO deverá ser planejado e implantado com base nos riscos à saúde dos trabalhadores, especialmente os identificados nas avaliações previstas nas demais NR.

Quais responsabilidades recaem sobre o empregador quanto ao PCMSO?
7.3.1 Compete ao empregador:
a) garantir a elaboração e efetiva implementação do PCMSO, bem como zelar pela sua eficácia;
b) custear sem ônus para o empregado todos os procedimentos relacionados ao PCMSO;
c) indicar, dentre os médicos dos Serviços Especializados em Engenharia de Segurança e Medicina do Trabalho – SESMT, da empresa, um coordenador responsável pela execução do PCMSO;
d) no caso de a empresa estar desobrigada de manter médico do trabalho, de acordo com a NR 4, deverá o empregador indicar médico do trabalho, empregado ou não da empresa, para coordenar o PCMSO;
e) inexistindo médico do trabalho na localidade, o empregador poderá contratar médico de outra especialidade para coordenar o PCMSO.

Que empresas estão desobrigadas de indicar médico coordenador do PCMSO?
7.3.1.1 Ficam desobrigadas de indicar médico coordenador as empresas de grau de risco 1 e 2, segundo o Quadro 1 da NR 4, com até 25 (vinte e cinto) empregados e aquelas de grau de risco 3 e 4, segundo o Quadro 1 da NR 4, com até 10 (dez) empregados.

Os exames médicos ocupacionais só podem ser realizados pelo médico coordenador?
O dono do estabelecimento escolhe o local em que serão realizados os exames complementares?
7.3.2 Compete ao médico coordenador:
a) realizar os exames médicos previstos no item 7.4.1 ou encarregar os mesmos a profissional médico familiarizado com os princípios da patologia ocupacional e suas causas, bem como com o ambiente, as condições de trabalho e os riscos a que está ou será exposto cada trabalhador da empresa a ser examinado;
b) encarregar dos exames complementares previstos nos itens, quadros e anexos desta NR profissionais e/ou entidades devidamente capacitados, equipados e qualificados.

Que exames médicos ocupacionais são obrigatórios?
7.4.1 O PCMSO deve incluir, entre outros, a realização obrigatória dos exames médicos:
a) admissional;
b) periódico;
c) de retorno ao trabalho;
d) de mudança de função;
e) demissional.

Quando se fala de exames médicos ocupacionais estamos nos referindo a quê?
7.4.2 Os exames de que trata o item 7.4.1 compreendem:
a) avaliação clínica, abrangendo anamnese ocupacional e exame físico e mental;
b) exames complementares, realizados de acordo com os termos específicos nesta NR e seus anexos.

A NR 7 discrimina em seu quadros I diferentes tipos de riscos químicos e os respectivos exames complementares a ser realizados. Com que periodicidade serão realizados?
7.4.2.1 A periodicidade de avaliação dos indicadores biológicos do Quadro I deverá ser, no mínimo, semestral, podendo ser reduzida a critério do médico coordenador, ou por notificação do médico agente da inspeção do trabalho, ou mediante negociação coletiva de trabalho.

Que outros exames complementares são admitidos pela NR 7,além dos constantes nos Quadros I e II?
7.4.2.2 Para os trabalhadores expostos a agentes químicos não constantes dos Quadros I e II, outros indicadores biológicos poderão ser monitorizados, dependendo de estudo prévio dos aspectos de validade toxicológica, analítica e de interpretação desses indicadores.
7.4.2.3 Outros exames complementares usados normalmente em patologia clínica para avaliar o funcionamento de órgãos e sistemas orgânicos podem ser realizados, a critério do médico coordenador ou encarregado, ou por notificação do médico agente da inspeção do trabalho, ou ainda decorrente de negociação coletiva de trabalho.

O exame médico admissional pode ser realizado após o início das atividades do trabalhador?
Deverá ser realizado antes que o trabalhador assuma suas atividades;

Que fatores obrigam a realização anual do exame médico ocupacional ?
Para trabalhadores expostos a riscos ou a situações de trabalho que impliquem o desencadeamento ou agravamento de doença ocupacional;
Para aqueles que sejam portadores de doenças crônicas;
Quando menores de 18 (dezoito) anos e maiores de 45 (quarenta e cinco) anos de idade.

Todo operário que retorna ao trabalho,fará exame de retorno ao trabalho?
Não,apenas os afastados por qualquer motivo de saúde por período igual ou superior a 30 dias.

Em que momento realiza-se o exame médico de retorno ao trabalho?
Obrigatoriamente no primeiro dia da volta ao trabalho

Todo trabalhador que muda de função deve realizar o exame de mudança de função?
Apenas quando houver alteração de atividade, posto de trabalho ou de setor que implique a exposição do trabalhador a risco diferente daquele a que estava exposto antes da mudança.

Quando se deve realizar o exame de mudança de função?
Antes da data da mudança.

Em que situações o trabalhador que se desliga da empresa não precisa de exame demissional?
Desde que o último exame médico ocupacional tenha sido realizado a período igual ou superior a
- 135 (centro e trinta e cinco) dias para as empresas de grau de risco 1 e 2, segundo o Quadro I da NR-4;
- 90 (noventa) dias para as empresas de grau de risco 3 e 4, segundo o Quadro I da NR-4.

Para cada exame médico ocupacional que documento é emitido e em quantas vias?
7.4.4 Para cada exame médico realizado, previsto no item 7.4.1, o médico emitirá o Atestado de Saúde Ocupacional -ASO, em 2 (duas) vias.

Que destino terá a primeira via do ASO (Atestado de Saúde Ocupacional)?
7.4.4.1 A primeira via do ASO ficará arquivada no local de trabalho do trabalhador, inclusive frente de trabalho ou canteiro de obras, à disposição da fiscalização do trabalho.

Que destino terá a segunda via do ASO?
7.4.4.2 A segunda via do ASO será obrigatoriamente entregue ao trabalhador,...

Que elementos o ASO deve conter?
7.4.4.3 O ASO deverá conter no mínimo:
a) nome completo do trabalhador, o número de registro de sua identidade e sua função;
b) os riscos ocupacionais específicos existentes, ou a ausência deles, na atividade do empregado, conforme instruções técnicas expedidas pela Secretaria de Segurança e Saúde no Trabalho-SSST;
c) indicação dos procedimentos médicos a que foi submetido o trabalhador, incluindo os exames complementares e a data em que foram realizados;
d) o nome do médico coordenador, quando houver, com respectivo CRM;
e) definição de apto ou inapto para a função específica que o trabalhador vai exercer, exerce ou exerceu;
f) nome do médico encarregado do exame e endereço ou forma de contato;
g) data e assinatura do médico encarregado do exame e carimbo contendo seu número de inscrição no Conselho Regional de Medicina.

Que elementos são obrigatórios no ASO para identificar o trabalhador?
Nome completo do trabalhador, o número de registro de sua identidade e sua função.

Onde deverão ser registrados os dados obtidos nos exames médicos, incluindo avaliação clínica e exames complementares, as conclusões e as medidas aplicadas ?
Em prontuário clínico individual, que ficará sob a responsabilidade do médico-coordenador do PCMSO.

Havendo substituição do médico coordenador,a quem será devida a guarda dos prontuários?
Seu sucessor.

O prontuário clínico individual deverá ser guardado por quantos anos?
Por 20 anos após o desligamento do trabalhador.

O que é o relatório anual do PCMSO?
Um planejamento em que estejam previstas as ações de saúde a serem executadas durante o ano, devendo estas ser objeto de relatório anual.

O que o relatório anual deverá discriminar?
7.4.6.1 O relatório anual deverá discriminar, por setores da empresa, o número e a natureza dos exames médicos, incluindo avaliações clínicas e exames complementares, estatísticas de resultados considerados anormais, assim como o planejamento para o próximo ano, tomando como base o modelo proposto no Quadro III desta NR.












sábado, 19 de maio de 2012

SESMT COMENTADO - REGISTRO DE ACIDENTES


Qual a postura do SESMT frente a acidentes e/ou doenças relacionadas ao trabalho?
- 4.12. Compete aos profissionais integrantes dos Serviços Especializados em Engenharia de Segurança e em Medicina do Trabalho:
(h)       analisar e registrar em documento(s) específico(s) todos os acidentes ocorridos na empresa ou estabelecimento, com ou sem vítima, e todos os casos de doença ocupacional, descrevendo a história e as características do acidente e/ou da doença ocupacional, os fatores ambientais, as características do agente e as condições do(s) indivíduo(s) portador (es) de doença ocupacional ou acidentado(s);
(i)         registrar mensalmente os dados atualizados de acidentes do trabalho, doenças ocupacionais e agentes de insalubridade, preenchendo, no mínimo, os quesitos descritos nos modelos de mapas constantes nos Quadros III, IVV e VI, devendo a empresa encaminhar um mapa contendo avaliação anual dos mesmos dados à Secretaria de Segurança e Medicina do Trabalho até o dia 31 de janeiro, através do órgão regional do MTb;
(j)         manter os registros de que tratam as alíneas "h" e "i" na sede dos Serviços Especializados em Engenharia de Segurança e em Medicina do Trabalho ou facilmente alcançáveis a partir da mesma, sendo de livre escolha da empresa o método de arquivamento e recuperação, desde que sejam asseguradas condições de acesso aos registros e entendimento de seu conteúdo, devendo ser guardados somente os mapas anuais dos dados correspondentes às alíneas "h" e "i" por um período não inferior a 5 (cinco) anos;
E se o acidente não tiver vítimas?
- Será também objeto de investigação e registro em documento específico.

O que deve constar no registro de acidentes e/ou doenças ocupacional?
- A história e as características do acidente e/ou da doença ocupacional, os fatores ambientais, as características do agente e as condições do(s) indivíduo(s) portador (es) de doença ocupacional ou acidentado(s).

Que conteúdo , o mapa elaborado pelo SESMT, terá?
Os dados atualizados de acidentes do trabalho, doenças ocupacionais e agentes de insalubridade.

Com que periodicidade o mapa deve ser atualizado?
- Mensalmente.

O que deve ser entregue anualmente e de forma atualizada à Secretaria de Segurança e Saúde do Trabalho (SSST)?
- O mapa supracitado, até 31 de janeiro.

Portanto o mapa será atualizado mensalmente pelo SESMT, e entregue anualmente à SSST?
- Sim.

Onde devem ser guardados tanto o registro de acidentes e/ou doenças relacionadas ao trabalho, assim como o mapa anual? Por quanto tempo devem ser guardados?
- Na sede do SESMT e facilmente alcançáveis a partir da mesma.
- A guarda desses documentos será por um período mínimo de 5 anos.

domingo, 13 de maio de 2012

CIPA - RELAÇÃO COM PROGRAMAS DE SST


Qual a relação entre a CIPA e os programas de segurança e saúde no trabalho?

5.16 A CIPA terá por atribuição:
i) colaborar no desenvolvimento e implementação do PCMSO e PPRA e de outros programas relacionados à segurança e saúde no trabalho;

7.4.6 O PCMSO deverá obedecer a um planejamento em que estejam previstas as ações de saúde a serem executadas durante o ano, devendo estas ser objeto de relatório anual.
7.4.6.2 O relatório anual deverá ser apresentado e discutido na CIPA, quando existente na empresa, de acordo com a NR 5, sendo sua cópia anexada ao livro de atas daquela comissão.

9.2.2 O PPRA deverá estar descrito num documento-base contendo todos os aspectos estruturais constantes do item 9.2.1.
9.2.2.1 O documento-base e suas alterações e complementações deverão ser apresentados e discutidos na CIPA,quando existente na empresa, de acordo com a NR-5, sendo sua cópia anexada ao livro de atas desta Comissão.

Percebe-se que a CIPA não terá um papel passivo frente aos programas de SST; pelo contrário, participará no desenvolvimento e implementação daqueles.

Entretanto, como ponto de partida, esses programas precisam ser apresentados e discutidos na Comissão; daí os comandos legais da NR 7(PCMSO) e da NR 9(PPRA).

sábado, 12 de maio de 2012

NR 10 - ENTREVISTA COM UM DOS ELABORADORES DA NORMA


1 - Entrevista ao Engenheiro Joaquim Pereira

Entrevista ao Engenheiro Joaquim Pereira no dia 03 de agosto de 2008 à Man-IT, com relação às dúvidas sobre NR-10.

O Engenheiro Elétrico Joaquim Gomes Pereira é um profissional de Engenharia de Segurança no Trabalho, atuante há 27 anos como Auditor Fiscal do MTE e Coordenador da NR10.

Entrevista:

Man-it - Quantas horas devem ter o treinamento de reciclagem NR10 básico e SEP, quando estes têm sua validade vencida após dois anos do último treinamento?
Man-it - Qual o conteúdo programático para o treinamento de reciclagem NR10 básico e SEP?
Eng. Joaquim - R1 e R2: Os treinamentos de reciclagem, conforme NR10, não definem especificamente conteúdo programático ou carga horária, e nem mesmo recursos a serem utilizados, porém fica evidente que os assuntos abordados deverão ser da mesma natureza dos treinamentos regulamentados anexo III da Norma Regulamentadora nº 10, alterada pela Portaria 598/04, ou seja, "segurança em serviços e instalações elétricas". Por outro lado, ficou definido o período da reciclagem, ou o momento com base nos subitens:
a) troca de função ou mudança de empresa - (então o foco da RECICLAGEM deverá ser direcionado a troca de função entendida como alteração em atribuições ou local de trabalho, que carreia a alteração do cenário de desenvolvimento dos trabalhos e assim alterações de exposição a riscos elétricos);
b) retorno de afastamento ao trabalho ou inatividade por período superior a três meses - (então o foco da RECICLAGEM será atualizar e renovar os conceitos e práticas de prevenção nos conteúdos propostos);
c) modificações significativas nas instalações elétricas ou troca de métodos, processos e organização do trabalho - (foco da RECICLAGEM nas mudanças do panorama das instalações, na inclusão de novos equipamentos e metodologias, assim como as alterações na organização do trabalho).

Contudo quando a motivação da reciclagem for bienal então o foco deverá ser o aprofundamento e direcionamento de acordo com as necessidades e a realidade da organização e que atenda com carga horária suficiente para permitir aproveitamento em revisões, nas mudanças que se processaram nos procedimentos, instalações e serviços, de forma a surtir o efeito desejado na prevenção de acidentes.

Transparece neste item o viés de gerenciamento e responsabilidade que norteia esta norma. Fica a critério de a empresa estabelecer esses currículos e cargas horárias das reciclagens e, por conseguinte, assumir a responsabilidade pela decisão, contudo me parece errônea a idéia de desenvolver uma carga de ensino de forma "genérica", sem considerar as necessidades da empresa e dos profissionais objeto da reciclagem.

Por outro lado, não será cabível, na reciclagem, a inserção de ensino destinado ao item técnico "eletricidade", pois esse assunto é parte da capacitação do profissional e não pode ocupar o espaço destinado ao saber de prevenção de acidentes com energia elétrica. Se o profissional não domina eletricidade será necessário encaminhá-lo para escola técnica.

A reciclagem bienal deve ter as necessidades de prevenção aos riscos elétricos da empresa, ser desenvolvida como sapatos, com número e formatação do usuário, não pode ser uma pizza "genérica" para cumprir a Lei, pois nesse caminho a empresa estará atendendo a legislação, mas não agregará valor ao seu quadro de empregados e as melhorias de qualidade.

Para sua orientação, o foco da reciclagem deve ser os acidentes da empresa, as mudanças nos métodos e equipamentos, as atualizações de procedimentos ocorridos desde o último treinamento, os relatórios da NR10 (obrigatório conforme Norma), etc.


Man-it - O treinamento feito por pessoa física (particular) tem validade para admissão na empresa?
Eng. Joaquim - R3: Os treinamentos preconizados na Norma, acima mencionada, destinados a trabalhadores a serem "autorizados" por seu(s) tomador(es) de serviço(s) a intervir em instalações ou realizar serviços elétricos, e ministrados por instituição, organização ou a própria empresa mediante o concurso de profissionais com curso específico nas áreas de saber envolvidas nos treinamentos. É atribuição dos conselhos de classe definir os profissionais "habilitados" a ensinar nas áreas de saber necessárias aos treinamentos, ou seja, elétrica, segurança no trabalho e de medicina. É evidente que os itens da Norma estão destinados à promoção de transferência de conhecimento em segurança elétrica, do trabalho e de medicina e resgate, específicos e próximos da realidade de cada empresa, das situações efetivas de trabalho e nas condições reais das atividades a serem desenvolvidas pelos autorizados.


Man-it - No momento da contração, a empresa pode exigir do candidato o treinamento de NR10?
Eng. Joaquim - R4: Sim, contudo deve reciclá-los nos treinamentos básico e complementar, nas situações regulamentadas no item 10.8.8.2 e alíneas. A alínea "a" - obriga à reciclagem quando houver "mudança de empresa". É bastante lógico que a mudança de empresa acarreta a ocorrência de alterações em atribuições, no local de trabalho, na classe e modelos de instalações elétricas, na mudança de procedimentos de trabalho etc. E assim, promove alterações de exposição a riscos elétricos.


Man-it - Quem tem que fazer o treinamento NR10 básico?
Eng. Joaquim - R5: Todos os trabalhadores a serem "autorizados", conforme prevê a NR10.


Man-it - Quem tem que fazer o treinamento NR10 SEP?
Eng. Joaquim - R6: Todos os trabalhadores a serem "autorizados" a atividades no SEP e a trabalhos em suas proximidades, conforme prevê a NR10.


Man-it - Qual a qualificação do docente para aplicar o treinamento NR10 básico e SEP?
Eng. Joaquim - R7: Idem resposta R3.


Man-it - Como é dada a validação destes treinamentos?
Man-it - Uma empresa privada pode oferecer este treinamento desde que tenha um profissional capacitado e habilitado?
Eng. Joaquim - R8 e R9: Já respondido na R3.

Man-it - Quais os riscos que esta empresa que oferece este treinamento assume perante seus clientes quando assina um certificado de conclusão destes treinamentos?
Eng. Joaquim - R10: Os riscos preconizados nos códigos civil e criminal.


Man-it - Há um empregado em uma determinada empresa que fez o treinamento de NR10 - Básico e ou SEP em Junho de 2008 e em julho ele deixou a empresa e começou a trabalhar em outra empresa completamente distinta da primeira. A legislação exige que ele faça um novo treinamento. Como é interpretado pelo MTE quando a nova empresa acredita que a validade do treinamento é dada pelo certificado que o novo empregado possui com a assinatura da última empresa?
Eng. Joaquim - R11: Vide resposta R4.
==========================================================================================================================================================

Entrevista Eng Joaquim / Vestimenta

Eng. Joaquim Gomes Pereira - NR10

Chefe dos auditores fiscais DRT-SP, En g. Eletricista e de Segurança no Trabalho, coordenador do GTT da NR-10 e Docente de cursos de Engenharia de Segurança no trabalho o Eng. Joaquim Gomes, em entrevista concedida com exclusividade à Protenge, tem esclarecido algumas dúvidas quanto a nova NR-10.

Protenge: As vestimentas para uso dos eletricistas, conforme estabelecido na NR-10, ítem 10.2.92, devem ser de uso diário ou somente quando o profissional adentrar em uma cabine primária ou subestação?
Eng. Joaquim Gomes: O uso das vestimentas especiais para a proteção do trabalhador autorizado (ítem 10.8 da Norma) contra os potenciais efeitos térmicos dos arcos voltaicos, conforme NR10, ítem 10.2.9.2, deve ser de uso PERMANENTE durante o desenvolvimento das atividades envolvendo serviços com instalações elétricias, sejam elas em painéis elétricos, circuitos, quadros elétricos, CCM, subestações (cabines), etc...
Salientamos que essas vestimentas especiais devem proteger contra a inflamabilidade e, portanto, constituem-se em Equipamento de Proteção Individual - EPI, devendo possuir o Certificado de Aprovação - CA, expedido pelo Ministério do Trabalho e Emprego.
Finalmente queremos observar que tais vestimentas devem ser objeto de análise de risco contendo o ´cálculo da gramatura adequada à energia incidente a que se expõe, potencialmente, os autorizados.
Questionário para cálculo de energia incidente

Protenge: As vestimentas devem contemplar os riscos de fogo e calor? O profissional deverá usar os EPI´s para proteção ao choque elétrico?
Eng. Joaquim: As vestimentas especiais destinam-se à proteção do tronco, membros superiores e inferiores do trabalhador autorizado contra os potenciais efeitos térmicos dos arcos voltaicos, neles incluído o fogo e o calor. As vestimentas são parte dos EPI´s necessários devendo os trabalhadores também estarem protegidos contra os choques elétricos (calçado especial para atividades com energia elétrica, luvas isolantes, capacete, óculos de segurança, mangotes isolantes, etc...)
Ainda, os trabalhadores com instalações elétricas, devem estar protegidos contra os demais grupos ou fatores de risco, além dos elétricos, específicos de cada ambaiente ou processos de trabalho que, direta ou indiretamente, possam afetar a segurança e a saúde no trabalho.

Protenge: A Norma deixa claro que, não só quem trabalha diretamente com eletricidade deve usar estas vestimetnas, mas também quem trabalha indiretamente. Como identificar estes profissionais que embroa não trabalhem diretamente com eletricidade, devem usar as vestimentas?
Eng. Joaquim Gomes: A Norma no seu caput (item 10.1.2) abrange quaisquer trabalhos realizados nas "PROXIMIDADES" das instalações elétricias, além, obviamente das atividades desde a produção até o consumo final da energia elétrica, abrangendo as etapas do projeto (planejamento, levantamentos, medições...), construção (preparação, montagens e ampliações), operação (supervisão, controles, ação e acompanhamentos), manutenção (diagnóstico, reparação, substituição de partes e peças, testes).
Exemplo desses trabalhos (tarefas ou atividades) realizados em ambientes circunvizinhos sujeitos às influencias das instalaçaões elétricas ou execução de serviços elétricos que lhes são próximos, realizadas em instalações telefônicas, TV a Cabo e iluminação pública instaladas em estruturas de distribuição e transmissão de energia elétrica, ou trabalhadores em geral (construção, manutenção, operação não elétricas), mas que realizam suas atividades e serviços nas proximidades de zona controlada definida no anexo II.

Os trabalhadores das emepresas de telefonia estão obrigados a usar as vestimentas conforme estabelece a NR 10?
Sem dúvida as atividades em telefonia desenvolvidas em estruturas de distribuição e transmissão de energia elétrica tem muito risco e elevado numero de acidentes fatais, devendo o trabalhador envolvido estar protegido contra esses riscos e, dependendo das atividades e análise de risco, devem usar as vestimentas de proteção.

Protenge: As empresas estão assimilando esta nova forma de gerenciar os serviços na área elétrica ou estão apenas executando algumas exigencias só para "inglês" ver?
Eng. Joaquim Gomes: De forma geral as empresas estão assimilando e implantando as medidas determinadas pela nova Norma 10 e o Ministerio do Trabalho e Emprego vem, atentamente, acompanhando a implementação da Norma.
Contudo cabe-nos ressaltar que a NR10 é a BASE TÉCNICA LEGAL para aplicabilidade de sentenças judiciais criminais e cíveis (MJ); paralização das atividades ou TAC (MPT); multas arbitradas (MPT) e ações regressivas (MPAS).
=========================================================================================================================================================


1 - SEGURANÇA EM INSTALAÇÕES ELÉTRICAS DEPENDE DE INSPEÇÃO E MANUTENÇÃO ADEQUADAS

Os projetos de instalações elétricas industriais precisam considerar, com o devido cuidado, a presença de produtos inflamáveis nos processos, de forma a especificar equipamentos elétricos especiais que garantam a segurança da instalação.
É imprescindível o atendimento aos requisitos técnicos e legais nestas condições, em que o risco de explosões possa estar presente. Portanto, os equipamentos elétricos e eletrônicos destinados às funções de comando, iluminação, controle, monitoração e força, e que estejam instalados em locais com possibilidade de formação de mistura explosiva, devem ser cuidadosamente especificados, pois um equipamento elétrico inadequado poderá ser capaz de causar uma explosão. Porém não é suficiente apenas comprar o equipamento elétrico ou eletrônico. É necessário que ele seja instalado corretamente e que a manutenção preventiva seja executada periodicamente, garantindo que ele preservará as condições originais ao longo de sua vida útil.
Podemos citar como exemplo de indústria que requer tais cuidados a alcooleira. Devido à natureza das substâncias envolvidas, os processos neste tipo de indústria apresentam possibilidade de formação de misturas gasosas inflamáveis no ambiente. Caso esteja presente uma fonte de risco que possa promover a ignição desta mistura inflamável, seja uma fonte de calor ou mesmo a centelha de um circuito elétrico, poderá ocorrer uma explosão com consequências desastrosas para a planta e para a comunidade vizinha.
No Brasil, o parque industrial está sendo ampliado devido ao aumento do uso do metanol na matriz energética. O metanol é inflamável e solúvel em água, portanto deve-se tomar cuidado principalmente com o aparecimento de faíscas, que podem surgir na operação de equipamentos elétricos, nas proximidades dos locais com processos envolvendo metanol. Explosões em plantas de álcool sempre registraram elevados prejuízos, como pode ser verificado a seguir.

Fonte:
Revista Proteção
www.protecao.com.br
Janeiro 2012


1 - RISCO OU PERIGO

Não é de hoje que se confrontam os conceitos dos dois termos “risco” e “perigo”. Alunos da especialização em engenharia de segurança, ao pesquisarem para elaborar suas monografias, encontram o problema e são questionados nas suas apresentações.
Os conceitos dos termos risco e perigo, não se encerram na definição. Temos outras aplicações e termos derivados que dependem fundamentalmente do conceito do termo rais, no nosso idioma.
Recentemente, um artigo publicado intitulado “Equipamentos de Proteção Individual”, cujos trechos são transcritos, dizia o engenheiro Edson Martinho, batalhador pela segurança com eletricidade e co-fundador da Abracopel:
“Consultando a internet conseguimos várias definições de risco e de perigo e algumas são descritas abaixo”:
Risco: É a probabilidade ou chance de lesão ou morte (Sanders e McCormick) ou uma ou mais condições de uma variável com pontencial necessário para causar danos (De Cicco e Fantazzini) ou, ainda, é a probabilidade potencial de causar danos nas condições de uso e/ou exposição, bem como a possível amplitude do dano (definição pela Comissão Europeia).
A norma EM 50110, norma utilizada pela comunidade Europeia para segurança em trabalhos com eletricidade define o risco como sendo:
“combinação da probabilidade e da gravidade da possível lesão ou dano para a saúde de uma pessoa exposta a um ou vários perigos”.
Perigo: É uma condição ou conjunto de circunstâncias, que tem potencial de causar ou contribuir para lesão ou morte (Sanders e McComick) ou expressa uma exposição relativa ao risco, que favorece sua materialização em danos (De Cicco e Fantazzini) ou ainda é a propriedade ou capacidade intrínseca dos materiais, equipamentos, métodos e práticas de trabalho, potencialmente causadora de danos (definição pela Comissão Europeia).
Questionado sobre o assunto, o engenheiro Jorge Reis, respeitável ex-pesquisador da Fundacentro, responsável pela elaboração de normas regulamentadoras e por inúmeras outras contribuições para área de engenharia de segurança esclarece:
1- As definições em inglês envolvem os termos “damage, risk e hazard”.
2- Ao ser feita a tradução, profissionais que trabalhavam na Fundacentro não atentaram para a legislação nacional e, inadvertidamente, usaram a palavra “perigo”, quando a versão dessa palavra seria “danger” em inglês.
3- Em nossa legislação fica bem claro que o perigo advém do risco acentuado e sem controle; ao se procurar traduzir a palavra por semelhança, corre-se o risco (perigo??) de cometer falhas grotesca. Por exemplo, se você traduzir “push” por “puxe”, não conseguirá abrir nenhuma porta, pois “puxe” seria “pull” e “push” entende-se como “empurrar”.
4- Todos os trabalhadores em português que se basearam naquela tradução carregam a mesma inadequação.
5- Como já discutimos intensamente, no GTTE, grupo Técnico Tripartite que antecedeu a NR 10, apesar de ser considerado um risco, um revólver vai representar perigo no momento em que ele será carregado ou não, se está em suas mãos, nas mãos de um policial ou apontado para sua cabeça por um bandido, ou seja, pelo próprio bom senso, a palavra “perigo” não representa uma constante, mas uma variável cuja intensidade muda em função da forma como o risco (revólver) se apresenta!
Ou ainda, uma piscina cheia de água é um risco para uma pessoa que não saiba nadar, e um perigo quase nulo se a pessoa estiver a um quilômetro de suas bordas, mas vai se tornando um perigo maior à medida que essa pessoa se aproxima dela.
Em inglês, pode-se verificar que “hazard” não é simples sinônimo de “danger”, cada palavra reflete um conceito distinto.
Não foi por acaso que a NR 10 trouxe no glossário a definição dos termos. Antes de ser escrito, o glossário foi objeto de consulta e de muita discussão. Posteriormente, a norma foi a consulta pública, recebeu contribuições, críticas e abservações que depois de consolidadas resultaram em cerca de 500 folhas de papel.
Acrescentaria aos exemplos do engenheiro Jorge Reis a altura, que representa um risco (risco de altura) cujo perigo esta na possibilidade da queda. O risco (altura) é o mesmo dentro da sala no alto de um edifício, mas o perigo só existirá se houver a possibilidade de queda, por ausência de medidas de proteção.
Muito mais delicado e não menos aplicável é o conceito que acaba tentando tomar espaço nessa polêmica, quando se procura definir a periculosidade. Ora, o conceito de periculosidade está efetivamente atrelado à exposição ao risco. Só se está exposto ao risco quando ele não estiver satisfatoriamente controlado, o que é uma medida do perigo, esta sim uma medida inversamente proporcional às medidas de segurança e de controle.
O risco é característica própria da grandeza que se discute (altura, eletricidade, explosão, incêndio). Para o perigo são consideradas as medidas de proteção e as circunstâncias que envolvem o controle do risco.
Concluindo, os termos estão definidos na Norma Regulamentadora legal (por medida de segurança) para evitar que (se manifesta o risco de) uma interpretação errada, o que seria um perigo.
18. Perigo: situação ou condição de risco com probabilidade de causar lesão física ou dano à saúde das pessoas por ausência de medidas de controle.
22. Risco: capacidade de uma grandeza com potencial para causar lesões ou danos à saúde das pessoas.
Glossário da NR 10
Fonte:
Revista O Setor Elétrico – Ano 7 – Edição 73
Fevereiro de 2012


1 - PECULIARIDADES DA INSTALAÇÃO

Em continuidade aos questionamentos que frequentemente cercam os debates envolvendo segurança do trabalho, a coluna deste mês dá prosseguindo ao assunto iniciado na edição passada, que diz respeito ao adicional de periculosidade por eletricidade e à Orientação Jurisprudencial (OJ-324) utilizada indevidamente como diploma de generalização do que estabelece a Lei n. 7.369/85.
Um fator de distinção entre as instalações de suprimento (setor elétrico) e a sua utilização (consumo) são as condições de desligamento, quando existem, e as influências da vizinhança. As instalações do sistema elétrico de potência, quando seccionadas para trabalho em circuito desenergizado, o são habitualmente a distâncias consideráveis do local de trabalho, fora do alcance visual e do controle dos trabalhadores envolvidos na execução dos serviços, exigido sistemas de comunicação que também inserem maior possibilidade de falhas.
Somam-se à existência de trechos longos e à influência de circuitos vizinhos próximos (indução) os fenômenos atmosféricos, visto que a maioria das instalações está localizada em áreas externas e desabrigada, fatores agravantes próprios do SEP (setor elétrico). Por serem instalações que ocupam áreas de uso público sujeitas a influências imprevisíveis e cujo controle escapa aos trabalhadores, as instalações do SEP apresentam mais este risco adicional. Já nas instalações de consumo, a aplicação de técnicas e medidas administrativas de segurança associadas à inexistências das características de área de uso público eliminam esse agravante.
Há de se considerar, além das tensões empregadas, muito maiores no SEP (setor elétrico), os valores das potências de curto-circuito, que impõem a ocorrência de arcos elétricos consideráveis maiores que aqueles encontrados habitualmente nas instalações de consumo.
Diferentemente das instalações do SEP, nas instalações de consumo e utilização de eletricidade, há técnicas de proteção que garantem a desenergização dos circuitos, o efetivo controle dos trabalhadores sobre as chaves e dispositivos de manobra e uma sensível independência das instalações, o que reduz drasticamente a influência de um circuito. A principal técnica de proteção utilizada no SEP se resume ao distanciamento, à colocação fora de alcance, o que permite o uso de condutores nus e equipamentos com as partes energizadas expostas, as quais, no caso de intervenção, ficam na zona de alcance normal dos trabalhadores, daí a sua segurança depender fundamentalmente de seu conhecimento e dos equipamentos de proteção individual.
Ao contrário, nas instalações industriais, prediais e comerciais, as técnicas principais são a isolação das partes vivas (fios e cabos encapados) e o uso de invólucros e barreiras (caixas e recursos que impedem todo e qualquer contato com as partes energizadas).
Há de se considerar ainda as condições de trabalhos que envolvem sistematicamente os trabalhadores do setor elétrico, no que diz respeito às influências externas e condições ambientais, absolutamente adversas da maioria das condições de operação das empresas consumidoras de eletricidade e das instalações de consumo em geral, em que influências externas e ambientais são rigorosamente conhecidas e podem ser controladas.
Foi certamente com essas considerações que se incluiu, no quadro anexo do Decreto n. 9.3412/86, como áreas de risco também aquelas dos pátios e subestações, inclusive de consumidores, assegurados o mesmo tratamento aos trabalhadores do setor elétrico que venham a operar nessas áreas por operarem em instalações e locais com as mesmas características e peculiaridades encontradas no SEP (ora ratificado pela OJ-324).
Ao mesmo tempo em que o quadro do Decreto n. 93.412/86 menciona esses locais, fazendo uma referência específica (inclusive consumidores), fica muito claro que se incluíram essas instalações de consumidores e faz essa menção, posto que as demais não estejam aí incluídas.
Com um zelo louvável, especial e incomum, o texto da OJ-324 cuidou de delegar ao especialista avaliar se a situação em análise é em verdade similar: “...façam com equipamentos e instalações elétricas similares que ofereçam risco equivalente...”.
Este é um assunto que continua dependendo do conhecimento do perito e a equivalência de risco não se estabelece por acaso ou por palpite. São vários os aspectos a serem analisados para concluir pela similaridade dos equipamentos ou instalações e pela equivalência de risco, sem o que não se aplica à OJ-324.
Vemos nesta OJ-324 um esclarecimentos de grande serenidade e equilíbrio, o qual, da mesma forma como o parecer 173/86 do professor Amauri Mascaro Nascimento, então consultor jurídico do Ministério do trabalho, deve guiar o trabalho pericial de especialistas, pois estes entendem que a presença da eletricidade é apenas um dos aspectos em análise e que há peculiaridades das instalações que vão efetivamente definir a existência ou não da exposição dos trabalhadores ao risco elétrico dentro das premissas estabelecidas pela Lei e regulamentadas pelo Decreto.

Fonte:
Revista o Setor Elétrico – Ano 6 – Edição 72
Janeiro 2012



1 - ADICIONAL DE PERICULOSIDADE POR ELETRICIDADE

“É assegurado o adicional de periculosidade apenas aos empregados que trabalham em sistema elétrico de potência em condições de risco ou que o façam com equipamentos e instalações elétricas similares, que ofereçam risco equivalente, ainda que em unidade consumidora de energia elétrica”.
Ref.: OJ nº 324 da SDI do C. TST.

Nos eventos em que se aborda a segurança com eletricidade, objeto da NR 10, frequentemente, afloram questionamentos sobre adicional de periculosidade por eletricidade e, por conseqüência, a Orientação Jurisprudencial (OJ-324) utilizada indevidamente como diploma de generalização do que estabelece a Lei 7369/85. Por essa razão, segue para começar o ano de 2012 uma abordagem com algumas considerações técnicas para avaliação. Desejo aos que nos prestigiam com sua atenção, um ano repleto de sucesso e realizações, com saúde e paz.
São mais de 25 anos desde que foi sancionada a Lei 7369/1985, a qual todos sabemos ser fruto de uma demanda antiga dos eletricitários, trabalhadores do setor de energia elétrica, cuja exploração era monopólio governamental por meio de empresas que o Estado era acionista ou proprietário.
Impossibilitado de oferecer aumentos salariais para o setor isolado, o governo optou, na época, por atender à reivindicação antiga que elevasse a remuneração de categoria isolada pela concessão de uma gratificação por exposição ao risco elétrico, característica das condições de trabalho no setor elétrico e cujo mérito não é só nosso objetivo discutir.
Sancionada a Lei 7390 e publicada a Portaria 3.471 (de 17/10/1985), estipulando prazo de 90 dias para a apresentação de regulamentação, passou-se à elaboração do que seria o Decreto 92.212 e respectivo quadro anexo, que contou com a total e valiosa colaboração da Associação dos Engenheiros da Eletropaulo, encaminhada através do Sindicato dos Eletricitários de São Paulo, e que culminou no Decreto 92.212, posteriormente substituído pelo 93.412/1986.
O texto dos Decretos 92.212/1985 e 93.412/1986, em alguns pontos, extrapolou os termos da Lei 7369 ao tratar do pagamento proporcional, e em outros, deixou a desejar, especialmente quando mencionou os pátios e subestações, inclusive consumidoras, e que podem também ser acessadas por trabalhadores que não são do setor de energia elétrica, como estabelece a Lei.
Mas o Decreto, sabendo-se a sua origem, utilizou termos técnicos e específicos em total conformidade com o que estabelece a Lei, ou seja, apenas adotou a nomenclatura técnica (na regulamentação) daquilo que a Lei, através do legislador, chamou com o nome leigo de “Setor de energia elétrica”, identificado no linguajar especifico do Decreto, como “Sistema Elétrico de Potência (SEP)”, de acordo com o vocabulário técnico vigente e consagrado, mesmo quando traduzido para outro idioma.
Ora, todos os especialistas e pessoas envolvidas com assunto técnico de eletricidade sabem que as atividades e as condições de trabalho nas instalações do setor elétrico, isto é, SEP, que compreendem geração, transmissão e distribuição de energia elétrica, salvas raras oportunidades, quase nada tem a ver com as instalações destinadas ao consumo e à utilização de energia elétrica em ambientes industriais, domésticos ou comerciais.
As instalações do SEP, setor elétrico, em especial na distribuição, têm configuração predominantemente linear em que não são previstos dispositivos de seccionamento individual se não de grandes consumidores. Já nas instalações de consumo e utilização (industriais, comércio e condomínios), a configuração predominante é radial, o que permite facilmente o desligamento seletivo de cargas, individualmente e sem prejuízo do funcionamento do restante da instalação.
Nas instalações de distribuição e suprimentos de energia elétrica do SEP, a continuidade do fornecimento é um indicador de qualidade e a sua descontinuidade é medida em minutos por mês (DEC – totalização do tempo sem energia no período de um mês), assim como o é o número de vezes que o consumidor tem o seu suprimento descontinuado (FEC – total de vezes em que houve falta de energia). Esses parâmetros de qualidade são fatores que podem resultar em multas e penalidades às empresas do setor elétrico, o que associadas à continuidade do faturamento, as faz preferir os trabalhos com linhas e circuitos energizados (trabalhos sob tensão elétrica) ou o trabalho nas proximidades de partes energizadas, geralmente com condutores nus de forma a não interromper o fornecimento às unidades servidas pelo mesmo circuito elétrico.
São trabalhos identificados como em “Linha viva”, o que difere totalmente dos trabalhos nas instalações de consumo, que permitem a desenergização individualizada e não o trabalho energizado, a não ser para a identificação de circuitos e manobras.
Diferentemente do SEP, nas instalações industriais, os circuitos em reparo ou manutenção são habitualmente desenergizados para a maioria dos trabalhos dos eletricistas, mesmo porque não há possibilidade de que um equipamento funcione sem que seu suprimento seja pleno. A parada de uma ou outra máquina com sua total desenergização não implica necessariamente a parada das demais máquinas, que podem seguir operando normalmente, já que são supridas por circuitos independentes, em configuração predominantemente radial.
Nas instalações de consumo industrial, comercial e instalações prediais, em que são usados eletrodutos e caixas, com condutores isolados, se impõe como premissa básica o desligamento para os trabalhos de substituição de peças e modificações de manutenção elétrica industrial. Já nas instalações do SEP (setor elétrico), essas intervenções são praticadas sistematicamente com equipamentos energizados pelas razões já exposta.
Na próxima edição, o tema continuará a ser abordado nesta coluna.

Fonte:
Revista O Setor Elétrico – Ano 6 – Edição 71
Dezembro de 2011
====================================================================================================================================================================================================================================
Desenergização das Instalações Elétricas
PAINEL NR-10 - DESENERGIZAÇÃO DAS INSTALAÇÕES

 A desenergização é considerada uma medida de proteção coletiva prioritária pela NR-10, conforme consta no item 10.2.8.2, pois permite controlar o risco elétrico, de forma a garantir a segurança e a saúde do trabalhador. Aliás, é uma prática internacional, pois um serviço que pode ser realizado com a instalação desenergizada não deve ser feito de outra forma.
A desenergização não é o simples desligamento, mas sim a supressão da energia elétrica da instalação, Por isso, freqüentemente, o trabalho em instalações desenergizadas é chamado de "trabalho sem tensão". A própria NR-10 distingue a diferença entre a instalação desenergizada e a desligada no item 10.5.4, quando determina que os serviços executados em instalações elétricas desligadas, mas com possibilidade de energização, por qualquer meio ou razão, devem vender ao item 10.6 - ou seja, uma instalação sem possibilidade de energização por qualquer meio ou razão.
E o que é uma instalação energizada? A resposta está no item 10.6.1 da NR-10, que a define como instalação elétrica com tensão igual ou superior a 50 Volts em corrente alternada ou superior a 120 Volts em corrente continua. Deve-se observar que a tensão pode "aparecer" na instalação por diversas razões. Esse conceito é importante e será útil na definição do aterramento temporário.
A desenergização é um procedimento estabelecido na NR-10, utilizado para garantir que a instalação não será reenergizada por qualquer meio ou razão. A instalação desenergizada apresenta nível de segurança muito superior ao da desligada, e impede principalmente a energização acidental, que pode ser causada por:
• erros na manobra;
•fechamento de chave seccionadora;
• contato acidental com outros circuitos energizados, situados ao longo do circuito;
• tensões induzidas por linhas adjacentes ou que cruzam a rede; fontes de alimentação de terceiros (geradores);
• linhas de distribuição para operações de manutenção e instalação e colocação de transformadores;
• torres e cabos de transmissão nas operações de construção de linhas de transmissão;
• linhas de transmissão nas operações de substituição de torres; ou
• manutenção de componentes da linha


O procedimento adotado oficialmente no Brasil, através do item 10.5.1 da NR-10, estabelece que somente sejam consideradas desenergizadas as instalações elétricas liberadas para trabalho, mediante procedimentos apropriados, de acordo com a seguinte seqüência:
• seccionamento;
• impedimento de reenergização;
• constatação da ausência de tensão;
• instalação de aterramento temporário com equipotencialização dos condutores dos circuitos;
• proteção dos elementos energizados existentes na zona controlada (Anexo I); e
• instalação da sinalização de impedimento de reenergização.
Com isso, a NR-10 define todos os passos que devem ser adotados para que uma instalação seja considerada desenergizada. Além disso, reconhece no item 10.5.3 que podem existir razões, em função das peculiaridades de cada situação, para que as medidas constantes nas alíneas apresentadas sejam alteradas, substituídas, ampliadas ou eliminadas.
Neste caso devem ser desenvolvidos procedimentos específicos que garantam a manutenção do mesmo nível de segurança originalmente preconizado - sem isto as alterações não poderão ser feitas.
Esse procedimento devem ser previamente elaborado e assinado por profissional legalmente habilitado e autorizado. Não é admitida a alteração, substituição, ampliação ou eliminação de qualquer medida durante a execução dos trabalhos.
O procedimento de desenergização, definido no item 10.5.1 pela NR-10, é genérico e visa evitar a reenergização. Para que a desenergização possa ser realizada de maneira eficaz pelos trabalhadores responsáveis por esta tarefa, devem ser elaborados procedimentos específicos para cada tipo de instalação, em atendimento ao item 10.11.1 da mesma norma. Esse procedimento tem de descrever claramente como o trabalhador responsável pela desenergização deve realizar a tarefa, assim como as medidas de controle (EPIs e EPCs) a serem usadas em cada passo.
Os profissionais que executam a tarefa de desenergizar a instalação devem ser autorizados a trabalhar com instalações elétricas energizadas, de acordo com o capitulo 10.8 da NR-10. Um aspecto muito importante a ser recordado é que, durante o procedimento de desenergização, a instalação está desligada. enquanto não forem executadas todas as etapas do procedimento, a instalação não é considerada desenergizada.


O estado de instalação desenergizada deve ser mantido durante a execução das atividades. Para a reenergização, a NR-10 estabelece passos a serem seguidos (o inverso do procedimento de desenergização) no item 10.5.2 a saber:
• retirada das ferramentas, utensílios e equipamentos;
• retirada da zona controlada de todos os trabalhadores não envolvidos no processo de desenergização;
• remoção do aterramento temporário, da equipotencialização e das proteções adicionais;
• remoção da sinalização de impedimento de reenergização; e
• destravamento, se houver, e religação dos dispositivos de seccionamento.
Em função da importância da desenergização de uma instalação na garantia da segurança e saúde dos trabalhadores que intervêm em instalações elétricas, deve-se considerar a hipótese de maior formalidade nesse procedimento. Além dos passos seguidos, pode ser utilizada uma etiqueta com check-list e a identificação dos trabalhadores responsáveis pela desenergização.
A desenergização é a medida de controle prioritária, de acordo com a NR-10, para garantir a segurança e a saúde dos trabalhadores. Portanto, para que seja aplicado de maneira eficaz, cada passo deve ser realizado de maneira adequada. A forma mais fácil e segura é seguir os requisitos das normas técnicas, pois não é prudente realizá-la de forma intuitiva. Nas próximas edições serão abordados os passos do procedimento de desenergização e principalmente as recomendações estabelecidas nas normas técnicas para garantir a segurança e a saúde dos trabalhadores.
====================================================================================================================================================================================================================================================================================

Introdução

A energia elétrica é um pouco como o ar que respiramos - você não pensa sobre ela até ficar sem. A energia apenas está "lá", satisfazendo cada uma de suas necessidades constantemente. Você a usa para aquecimento,esfriamento, cozimento, refrigeração, iluminação, som, computador,entretenimento... Sem ela, a vida pode ficar meio desconfortável.
A energia viaja desde a usina elétrica até sua casa por um sistema incrível chamado, rede de distribuição de energia.
http://static.hsw.com.br/gif/power-transmission.jpg
A rede elétrica é pública - se você vive em um subúrbio ou em uma zona rural, pode ser que ela esteja ao ar livre, para todos verem. Ela está tão a vista que você provavelmente nem a percebe mais. Seu cérebroprovavelmente ignora todos os cabos de eletricidade porque são vistos com freqüência. Neste artigo, vamos ver todo o equipamento que traz a energia elétrica até sua casa. Da próxima vez que você olhar para uma rede elétrica, você vai realmente vê-la e entender o que está acontecendo.
Como funcionam as redes elétricas
por Marshall Brain - traduzido por HowStuffWorks Brasil

Neste artigo
1. 

2. 
A usina elétrica

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

A usina elétrica

A energia elétrica é gerada na usina elétrica. Em quase todos os casos, a usina elétrica consiste de um gerador elétrico rotativo. Algo tem que acionar esse gerador - pode ser uma turbina hidráulica em uma represa hidrelétrica, um grande motor a diesel ou uma turbina a gás. Nos Estados Unidos, na maioria dos casos o gerador é acionado por uma turbina a vapor. O vapor pode ser obtido pela queima de carvão, óleo ou gás natural. O vapor pode vir também de um reator nuclear como este, na usina elétrica nuclear Shearon Harris, próximo a Raleigh, na Carolina do Norte:
http://static.hsw.com.br/gif/nuclear-core.jpg
Não importa o que os aciona, geradores elétricos comerciais de qualquer tamanho geram o que é chamado de energia trifásica CA. Para entender uma energia trifásica CA, é interessante entender primeiro a energia monofásica.
http://static.hsw.com.br/gif/blackout-plants.gif
Foto cedida Departamento Amerciano de Energia
Um esquema das principais fontes das usinas de energia elétrica dos Estados Unidos, por fonte

A usina elétrica: corrente alternada

Energia monofásica é o que você tem em sua casa. Você geralmente fala sobre a instalação elétrica da casa como uma instalação monofásica de 120 volts CA. Se você usar um osciloscópio e olhar a energia encontrada em uma tomada normal da parede de sua casa, verá que a energia na tomada parece uma onda senoidal, e que a onda oscila entre -170 volts e 170 volts (os picos estão na verdade em 170 volts; é a tensão eficaz (rms) que é de 120 volts). A freqüência da onda senoidal é de 60 ciclos por segundo (Hertz). Sinais elétricos com estas características são, geralmente, chamados de CA, ou corrente alternada. A alternativa para o sinal CA é o sinal CC, oucorrente contínua. As baterias produzem sinais CC: a corrente elétrica flui em uma única direção, do terminal positivo para o negativo da bateria.
O sinal CA tem pelo menos três vantagens sobre o sinal CC em uma rede de distribuição de energia:
1.    grandes geradores elétricos geram CA naturalmente; assim, a conversão para CC envolveria uma etapa extra;
2.    os transformadores devem ter correntes alternadas para operar, e veremos que a rede de distribuição de energia depende dos transformadores;
3.    é fácil converter CA em CC, mas é caro converter CC em CA; então, se você tiver de optar por uma, escolha a CA.
A usina, portanto, produz CA. Na próxima página, você vai aprender sobre a energia CA produzida na usina elétrica. Notavelmente, ela é produzida em três fases.

A usina elétrica: energia trifásica

A usina elétrica produz energia CA em três diferentes fases simultaneamente, sendo que as três possuem 120º de defasagemuma em relação à outra. Há 4 cabos saindo de cada usina elétrica: as três fases mais o neutro ou terra, comum para todas as fases. Se você olhar para as três fases em relação ao terra, em um gráfico, elas teriam a seguinte forma:
http://static.hsw.com.br/gif/power-3phase-graph.gif
Não há nada mágico sobre a energia trifásica. São simplesmente três fases sincronizadas e defasadas em 120 graus.
Por que três fases? Por que não uma, duas ou quatro? Em um sistema com uma ou duas fases, existem 120 instantes por segundo que uma onda senoidal cruza o 0 volt. Já em um sistema trifásico, em qualquer instante uma das fases está próxima do pico. Dessa forma, há um ganho com relação à potência para os motores trifásicos de alta potência (usados nas aplicações industriais) e os equipamentos de solda trifásicos, por exemplo. Quatro fases não representariam uma melhora significativa neste cenário, mas acrescentariam um quarto cabo; então, a opção natural é o sistema trifásico.
E o que falar sobre esse "terra", mencionado acima? A empresa de energia usa essencialmente a terra como um dos cabos no sistema de potência. A terra é um ótimo condutor e é enorme; então, ela representa um bom caminho de retorno para os elétrons. Os fabricantes de carros fazem algo similar. Eles usam o chassi de metal do carro como um dos cabos no sistema elétrico do veículo e conectam o pólo negativo da bateria ao chassi. "Terra" na rede de distribuição é literalmente "o planeta Terra", que é tudo em seu redor quando você caminha lá fora. É o cascalho, as pedras, a água do subsolo, etc.

Subestação de transmissão

A energia trifásica (sinais de tensão e corrente CA) sai do gerador e segue para a subestação de transmissão na usina elétrica. Essa subestação utiliza grandes transformadores para elevar a tensão do gerador (que está em um nível de milhares de volts) até tensões extremamente altas, para a transmissão de longa distância através da rede de transmissão. 
http://static.hsw.com.br/gif/power-pp-ss.jpg
Uma típica subestação em uma usina elétrica
Você pode ver, ao fundo, várias torres com três cabos saindo da subestação. As tensões típicas para a transmissão de longa distância variam de 155 mil a 765 mil volts. Esse nível de tensão visa reduzir as perdas nas linhas. A distância máxima de uma transmissão típica é de aproximadamente 483 km. As linhas de transmissão de alta tensão são inconfundíveis quando você as vê. Normalmente, elas são constituídas de enormes torres de aço como esta:
http://static.hsw.com.br/gif/power-transmission.jpg
Todas as torres da figura possuem três cabos, sendo um para cada fase. Muitas torres, como as mostradas acima, possuem cabos extras correndo ao longo de seu topo. Estes são cabos aterrados (denominados pára-raios ou cabo-guarda) e eles estão lá principalmente em uma tentativa de atrair raios.

A rede de distribuição

Para a energia ser útil em uma casa ou comércio, ela vem da rede de transmissão e é reduzida para a rede de distribuição. Isso pode acontecer em várias etapas. O local onde ocorre a redução da "transmissão" para a "distribuição" é a subestação de distribuição. Uma subestação de distribuição geralmente faz duas ou três coisas:
·         ela tem transformadores que reduzem a tensão de transmissão (de uma faixa de dezenas ou centenas de milhares de volts) para a tensão de distribuição (geralmente de menos de 10 mil volts);
·         ela tem um "barramento" que pode direcionar a energia para várias cargas;
·         geralmente há disjuntores e chaves, visando desconectar a subestação da rede de transmissão ou desligar linhas que saem da subestação de distribuição quando necessário.
http://static.hsw.com.br/gif/power-ss-overview-back.jpg
Uma típica subestação de pequeno porte
O equipamento (caixa cinza) em primeiro plano é um grande transformador. À esquerda (e fora do quadro, mas visível na próxima foto) está a linha de energia que chega da rede de transmissão e um conjunto de chaves associado a essa linha. À direita está um barramento de distribuição e mais três reguladores de tensão.
http://static.hsw.com.br/gif/power-ss-in.jpg
As linhas de transmissão entrando na subestação e passando pelas chaves na torre

http://static.hsw.com.br/gif/power-ss-transformer.jpg
As chaves na torre e o transformador principal
Agora o barramento de distribuição aparece na foto.

Barramento de distribuição

A energia segue do transformador para o barramento de distribuição:
http://static.hsw.com.br/gif/power-ss-bus.jpg
Nesse caso, o barramento distribui a energia para dois conjuntos separados de linhas de distribuição em duas tensões diferentes. Os transformadores menores conectados aos barramentos estão reduzindo a tensão para o valor padrão (geralmente 7.200 volts) para um conjunto de linhas, ao passo que a parte da energia segue na outra direção, na tensão maior do transformador principal. A energia deixa essa subestação em dois conjuntos de três cabos, cada um em uma direção diferente:
http://static.hsw.com.br/gif/power-ss-out.jpg
Os cabos entre esses dois postes são os "cabos dos cabos" para suporte. Eles não transportam corrente.
http://static.hsw.com.br/gif/power-3-phase.jpg
Da próxima vez que você estiver viajando por uma estrada, pode olhar os cabos de energia de um modo completamente diferente. Na figura à direita, uma cena típica: os três cabos no alto dos postes são os três cabos para a energia trifásica. O quarto cabo mais abaixo é o fio terra. Em alguns casos haverá cabos extras, comumente fios de telefone ou TV a caboque utilizam os mesmos postes.
Como já mencionado, essa subestação em particular produz dois níveis de tensão. A tensão mais alta precisa ser reduzida novamente, o que geralmente acontecerá em outra subestação ou em transformadores menores em algum lugar da linha. Por exemplo, você freqüentemente vê uma grande caixa verde (talvez de 1,8 m de um lado) próximo a um conjunto de cargas. Ela está realizando a função de redução da tensão para estas cargas.

Banco regulador

Você também vai encontrar os bancos de reguladores localizados ao longo da linha, tanto subterrânea como aérea. Eles regulam a tensão da linha para evitar condições de subtensão e sobretensão.
http://static.hsw.com.br/gif/power-mini-sub.jpg
Um típico banco regulador
Lá em cima, na parte superior desta foto, estão três chaves que permitem que esse banco de reguladores seja desconectado para manutenção quando necessário:
http://static.hsw.com.br/gif/power-mini-ss-switch1.jpg
Nesse ponto, temos uma linha típica com tensão em torno de 7.200 volts, passando pelo bairro em três cabos (com um quarto cabo-terra, na parte de baixo do poste):
http://static.hsw.com.br/gif/power-3distrib2.jpg

Terminais

Uma casa precisa de apenas uma das três fases; então, é comum você ver três cabos pela estrada, e terminais para uma ou duas das fases escoarem pelas ruas laterais. Na foto abaixo, é ilustrado um terminal trifásico para um bifásico, com duas fases sendo derivadas para a direita:
http://static.hsw.com.br/gif/power-3to2.jpg
Aqui está um terminal bifásico para um monofásico, com somente uma fase correndo pela direita:
http://static.hsw.com.br/gif/power-2to1.jpg

Em casa

E, finalmente, estamos no cabo que leva a energia até sua casa! Fora de uma casa comum existe um conjunto de postes com um condutor fase (de7.200 volts) e um fio condutor terra (embora às vezes haja duas ou três fases no poste, dependendo de onde a casa está localizada na rede de distribuição). Em cada casa, há um transformador conectado ao poste, assim:
http://static.hsw.com.br/gif/power-house.jpg
Em muitos bairros, as linhas de distribuição são subterrâneas e há caixas verdes de transformadores em cada uma ou duas casas. Aqui estão alguns detalhes dos elementos presentes no poste:
http://static.hsw.com.br/gif/power-parts.gif
O trabalho do transformador é reduzir os 7.200 volts para os 240 voltsusados nas instalações elétricas residenciais normais. Vamos dar uma olhada no poste mais uma vez, desde a parte de baixo, para ver o que está acontecendo:
http://static.hsw.com.br/gif/power-ground.jpg
Há duas coisas para se notar nesta foto:
·         um cabo exposto descendo pelo poste: o fio terra. Todo poste no planeta tem um. Se você vir uma empresa de energia instalar um novo poste, perceberá que a extremidade do cabo exposto está conectada a uma haste na base do poste e, por isso, está em contato direto com a terra, percorrendo de 1,8 a 3 m no subsolo. Esta é uma conexão boa e sólida com a terra. Se você examinar um poste com cuidado, verá que o fio terra que corre entre os postes está conectado a essa ligação direta com o solo;
·         dois cabos saindo do transformador e três cabos entrando na casa. Os dois cabos do transformador são isolados e o terceiro é exposto. O cabo exposto é o fio terra. Os dois cabos isolados possuem cada um 120 volts, mas estão 180 graus defasados; então, a diferença entre eles é de 240 volts. Essa configuração permite que o proprietário da casa use tanto os aparelhos de 120 volts como os de 240 volts. O transformador é enrolado neste tipo de configuração:
http://static.hsw.com.br/gif/power-transformer-wiring.gif
Os 240 volts entram em sua casa através de um típico wattímetro como este:
http://static.hsw.com.br/gif/power-meter.jpg
O medidor permite que a empresa de energia cobre você.


Dispositivos de segurança: fusíveis

Fusíveis e disjuntores são dispositivos de segurança. Vamos dizer que você não tenha fusíveis ou disjuntores em casa e algo de errado aconteça. O que poderia acontecer de errado? Veja alguns exemplos:
·         um motor de ventilador queimar um rolamento, travar, superaquecer e derreter, causando uma conexão direta entre um fio fase e a terra;
·         um cabo vem solto em uma lâmpada e conecta diretamente um fio fase e a terra;
·         um rato morde o isolamento em um cabo e conecta diretamente o fio fase e a terra;
·         alguém passa com o aspirador de pó por cima do fio do abajur, cortando-o e conectando diretamente o fio fase à terra;
·         uma pessoa pendura um quadro na sala de estar e o prego atinge um fio fase na parede, conectando diretamente o fio fase à terra.
http://static.hsw.com.br/gif/power-fuse.jpg
Quando um fio fase de 120 volts se conecta diretamente à terra, seu efeito é enviar tanta eletricidade quanto possível através da conexão. O dispositivo ou o cabo na parede explodiriam em uma situação dessas (o cabo na parede ficaria quente como a resistência de um forno elétrico). Um fusível é um dispositivo simples projetado para superaquecer e queimar extremamente rápido em uma situação dessa. Em um fusível, uma pedaço fino de fio vaporiza rapidamente quando uma corrente elevada passa por ele. Isso interrompe a corrente no cabo imediatamente, protegendo-o do superaquecimento. Os fusíveis devem ser substituídos cada vez que queimarem. Um disjuntor usa o calor de uma sobrecarga para acionar um mecanismo e abrir como uma chave, por isso os disjuntores podem ser religados.
A energia, então, entra na casa através de um típico quadro de disjuntores como este de cima.

Dispositivos de segurança: disjuntores

http://static.hsw.com.br/gif/power-fuse.jpg
Dentro do quadro de disjuntores (à direita) você pode ver os dois fios principais do transformador entrando na parte superior do disjuntor geral. O disjuntor geral permite que você interrompa a energia do quadro inteiro quando necessário. Dentro desse arranjo, todos os cabos seguem para as diversas tomadas e luzes da casa, através de um disjuntor ou fusível:
http://static.hsw.com.br/gif/power-fuse-open.jpg
Se o disjuntor estiver acionado, a energia fluirá através dos fios na parede e eventualmente fará seu caminho até o destino final: a tomada.
http://static.hsw.com.br/gif/power-outlet.jpg
Que história incrível! É necessário todo esse equipamento para que a energia da usina elétrica chegue até seu quarto.
http://static.hsw.com.br/gif/power-transmission.jpg
Da próxima vez que você viajar por uma estrada e olhar para as linhas de energia, ou da próxima vez que acender a luz, vai entender muito melhor o que está acontecendo. A rede de distribuição de energia é, na verdade, um sistema incrível.



Como funcionam as pilhas e baterias
por Marshall Brain - traduzido por HowStuffWorks Brasil

Neste artigo
1. 
Introdução

2. 

3. 

4. 

Introdução

http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/bt-quiz_r1_c1.jpg
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/bt-quiz_r3_c1.jpg
http://static.hsw.com.br/gif/spacer.gif
As baterias estão em todos os lugares,  carros, computadores, laptops , MP3 players etelefones celulares. Uma bateria é essencialmente uma lata cheia de químicos que produz elétrons. As reações químicas que produzem elétrons são chamadas de reações eletroquímicas. Neste artigo, aprenderemos tudo sobre baterias, desde o conceito básico de funcionamento, a verdadeira química que acontece dentro delas e o que o futuro reserva para as baterias e as possíveis fontes de energia que poderiam substituí-las.
bateria
Se você examinar qualquer bateria, notará que ela tem 2 terminais. Um terminal está marcado (+), ou positivo, enquanto o outro terminal está marcado (-), ou negativo. Em uma bateria tipo AA, C ou D (baterias normais de lanternas), as pontas das baterias são os terminais. Em uma bateria grande de carro, existem 2 terminais de chumbo.
http://static.hsw.com.br/gif/battery.gif
Elétrons se agrupam no terminal negativo da bateria. Se você conectar um fio entre os terminais positivo e negativo, os elétrons fluirão do terminal negativo para o terminal positivo o mais rápido que eles puderem (descarregar a bateria muito rápido pode ser perigoso, especialmente com baterias grandes, então não o faça). Normalmente, você conecta algum tipo de carga para a bateria usando um fio. Esta carga pode ser algo como umalâmpada, um motor ou um circuito eletrônico, como um rádio.
Dentro da bateria, uma reação química produz os elétrons. A velocidade da produção de elétrons por esta reação química (a resistência interna da bateria), controla quantos elétrons podem fluir entre os terminais. Os elétrons fluem da bateria para dentro do fio e passam do terminal negativo para o terminal positivo para que a reação química aconteça. Esta é a razão pela qual a bateria pode ficar em uma prateleira por um ano e ainda estar cheia de energia. Uma vez conectado o fio, a reação começa.

A primeira bateria foi criada por Alessandro Volta em 1800. Para criar essa bateria, ele fez uma pilha de camadas alternadas de zinco, papel mata-borrão ensopado em água salgada e prata, desse jeito:
http://static.hsw.com.br/gif/battery-pile.gif
Este arranjo ficou conhecido como uma pilha voltaica. As camadas de cima e de baixo da pilha precisam ser de metais diferentes, como mostrado. Se você conectar um fio em cima e um embaixo da pilha, poderá medir a voltagem e a corrente geradas. A pilha pode ser sobreposta quantas vezes for preciso para obter a voltagem desejada.

No século 19, antes da invenção do gerador elétrico (o gerador não foi inventado e aperfeiçoado até 1870), a Célula de Daniell, que é conhecida por outros 3 nomes: "célula de Crowfoot" por causa do formato típico do zinco, "célula de gravidade" por que a gravidade mantém os 2 sulfatos separados e "célula molhada", oposta à "célula seca" moderna, porque usa líquidos para os eletrólitos, era extremamente comum para o funcionamento dos telegráfos e das campainhas das portas. A célula de Daniell consiste de placas de cobre e zinco e sulfatos de cobre e zinco.
http://static.hsw.com.br/gif/battery-dan.gif
Para fazer a célula de Daniell, a placa de cobre é colocada no fundo de uma jarra de vidro. A solução de sulfato de cobre é colocada sobre a placa até a metade da jarra. Uma placa de zinco é então pendurada na jarra - como mostrado - e uma solução de sulfato de zinco é colocada cuidadosamente na jarra. O sulfato de cobre é mais denso que o sulfato de zinco, então o sulfato de zinco "flutua" sobre o sulfato de cobre. Obviamente, este arranjo não funciona bem em uma lanterna, mas funciona bem para aplicações fixas. Se você tiver acesso a sulfato de zinco e sulfato de cobre, pode tentar fazer a sua própria célula de Daniell.

Experiências
Se você quiser aprender sobre as reações eletroquímicas usadas para criar baterias, é fácil fazer experiências em casa para tentar combinações diferentes. Para fazer estes experimentos corretamente, precisa comprar umvoltímetro (US$ 10 a US$ 20) em uma loja de material eletrônico ou de construção. Esteja certo de que o voltímetro pode ler baixas voltagens (cerca de 1 volt) e baixas correntes (cerca de 5 a 10 miliampêres). Desta maneira, você será capaz de ver exatamente o que a sua bateria está fazendo.
Você pode criar a sua própria pilha voltaica usando moedas e papel toalha. Misture sal com água (a maior quantidade de sal que a água suportar) e ensope o papel toalha nesta salmoura. Faça então uma pilha alternando moedas de cobre e de níquel. Veja que tipo de voltagem e corrente esta pilha produz. Tente um número de camadas diferentes e veja qual o efeito que isto tem na voltagem. Depois, tente alternar moedas de cobre e de prata e veja o que acontece. Tente também moedas de prata e de níquel. Outros metais que você pode tentar incluem o papel alumínio e oaço. Cada combinação metálica deverá produzir uma pequena diferença na voltagem.
http://static.hsw.com.br/gif/battery-pile.gif
Um outro experimento simples que você pode tentar envolve um pote, ácido diluído, fio e pregos. Encha o pote com suco de limão ou vinagre (ácidos diluídos) e coloque um prego e um pedaço de fio de cobre dentro dele sem que um encoste no outro. Tente pregos revestidos de zinco (galvanizados) e pregos de ferro comuns. Meça a voltagem e a corrente conectando o seu voltímetro aos pedaços de metal. Substitua o suco de limão por água salgada e tente também com moedas e metais diferentes para ver o efeito na voltagem e na corrente.
Provavelmente a bateria mais simples que você pode criar é chamada debateria zinco-carbono. Entendendo a reação química que acontece dentro da bateria, você pode entender como as baterias funcionam.
Imagine que você tenha um pote de ácido sulfúrico (H2SO4). Enfie uma varinha de zinco dentro do pote e o ácido imediatamente começa a corroer o zinco. Você verá as bolhas de gás hidrogênio formando-se no zinco e a varinha e o ácido começarão a esquentar. O que está acontecendo é:
·         as moléculas de ácido estão se quebrando em 3 íons: 2 H+ íons e 1 SO4- íon.

·         os átomos de zinco na superfície da varinha de zinco perdem 2 elétrons (2e-) para se tornar Zn++ íons.

·         o Zn++ íons combinados com o SO4-- íon para criar ZnSO4, o qual dissolve o ácido.

·         os elétrons dos átomos de zinco combinam com os íons de hidrogênio no ácido para criar moléculas de H2 (gás de hidrogênio). Nós vemos o gás de hidrogênio como as bolhas se formando na varinha de zinco.
Nada acontece com uma varinha de carbono quando colocada no ácido. Mas se você conectar um fio entre a varinha de zinco e a varinha de carbono, 2 coisas mudarão:
·         os elétrons fluirão através do fio e se combinarão com o hidrogênio na varinha de carbono, então o gás de hidrogênio começa a borbulhar na varinha de carbono;

·         existe menos calor. Você pode fornecer energia para umalâmpada ou carga similar, usando os elétrons que fluem através do fio e pode medir a voltagem e a corrente no fio. Alguma energia do calor é transformada em movimento de elétrons.
Os elétrons movem-se para a varinha de carbono porque a combinação com o hidrogênio é mais fácil. Existe uma voltagem característica na célula de 0,76 volts. Eventualmente, a varinha de zinco se dissolverá completamente ou os íons de hidrogênio no ácido se desgastam e a bateria "morre".

·        
Ciência
·         Crianças
·         Eletrônicos
·         Empresas e Finanças pessoais
·         Entretenimento
·         Esporte
·         Informática
·         Saúde
·         Sociedade e Cultura
·         Sua casa
·         Viagem
http://static.hsw.com.br/pt-br/www/misc/bt-menu-shopping.jpg
·         Dicas sobre produtos
·          
http://static.hsw.com.br/pt-br/www/icons/img-videos2.gif 
QUIZ
·          
http://static.hsw.com.br/gif/quiz-icon-ch.gif
BLOG
·         Ano Polar
·         Eurocopa
·         Gadgets
·         Verão abaixo de zero
BOLETIM POR E-MAIL
·          


Publicidade
http://d1.openx.org/lg.php?bannerid=671368&campaignid=313453&zoneid=232110&source=ch=casa&sc=home-appliances&loc=1&referer=http%3A%2F%2Fcasa.hsw.uol.com.br%2Fbaterias1.htm&cb=7ff20f6d9c&r_id=b1514630b70067f8da80c9ef999d910e&r_ts=m1salj
Como funcionam as pilhas e baterias
por Marshall Brain - traduzido por HowStuffWorks Brasil

Neste artigo
1. 

2. 
A energia da bateria e seus usos

3. 

4. 

A energia da bateria e seus usos

Em qualquer bateria, o mesmo tipo de reação eletroquímica acontece para que os elétrons movam-se de um pólo a outro. Na verdade, metais e eletrólitos são usados para controlar a voltagem da bateria; cada reação diferente tem uma voltagem característica. Isto é, por exemplo, o que acontece em uma célula de uma bateria chumbo-ácido de carro:
·         a célula tem uma placa feita de chumbo e uma outra feita de dióxido de chumbo que estão mergulhadas em uma solução aquosa de ácido sulfúrico (eletrólito);
·         o chumbo combina com o SO4 (íons de sulfato) para criar PbSO4 (sulfato de chumbo) mais um elétron;
·         o dióxido de chumbo, os íons de hidrogênio e os íons de SO4 mais os elétrons da placa de chumbo criam PbSO4 e água na placa de dióxido de chumbo;
·         quando a bateria descarrega, as 2 placas formam PbSO4 (sulfato de chumbo) e água se forma no ácido. A voltagem característica é de cerca de 2 volts por célula, então, se você combina 6 células, você obtém uma bateria de 12 volts;
Uma boa característica que tem a bateria chumbo-ácido é que a reação química é completamente reversível. Se você aplicar corrente à bateria em uma voltagem correta, o chumbo e o dióxido de chumbo se formam de novo nas placas e então é possível usar a bateria novamente por várias vezes. Em uma bateria de zinco-carbono, não existe uma maneira fácil de reverter a reação, pois não se obtém facilmente o gás de hidrogênio de volta para o eletrólito.
As baterias modernas usam uma variedade de reações químicas para fornecer energia. Os produtos químicos típicos de uma bateria incluem:
·         bateria de zinco-carbono - também conhecida como bateriastandard de carbono, a química do zinco-carbono é usada em todas as baterias baratas do tipo AA, C e D. Os eletrodos são o zinco e o carbono com uma pasta ácida entre eles para servir de eletrólito;
·         baterias alcalinas - usadas pelas baterias comuns da Duracell e da Energizer, os eletrodos são o zinco e o óxido de manganês com um eletrólito alcalino;
·         baterias de lítio - lítio, iodeto de lítio e iodeto de chumbo são usados em câmaras digitais por causa da sua capacidade de fornecer aumento de energia;
·         baterias de chumbo-ácido - usadas em automóveis, os eletrodos são feitos de chumbo e óxido de chumbo com um eletrólito de ácido forte (recarregável);
·         baterias de níquel-cádmio - os eletrodos são o hidróxido de níquel e o cádmio com um eletrólito de hidróxido de potássio (recarregável);
·         baterias de níquel-metal hidreto - esta bateria está rapidamente substituindo a bateria de níquel-cádmio, pois ela não sofre doefeito memória (em inglês) que acontece nas baterias de níquel-cádmio (recarregáveis);
·         bateria de lítio-íon - com uma relação muito boa de peso-potência, ela é geralmente encontrada em computadores laptop etelefones celulares de ponta (recarregável);
·         bateria de zinco-ar - esta bateria é leve e recarregável;
·         bateria de zinco-óxido de mercúrio - geralmente usada em aparelhos auditivos;
·         bateria de prata-zinco - usada em aplicações aeronáuticas por sua boa relação peso-energia;
·         bateria de metal-cloreto - usada em veículos elétricos.
Em quase todos os aparelhos que usam baterias, não se usa somente uma célula por vez. Você geralmente as agrupa de forma serial para formar voltagens mais altas ou em paralelo para formar correntes mais altas. Em umarranjo serial, as voltagens se somam. Em um arranjo paralelo, as correntes se somam. O diagrama a seguir mostra estes 2 arranjos:
http://static.hsw.com.br/gif/battery-packs.gif
O arranjo de cima é chamado de arranjo paralelo. Supondo que cada célula produz 1,5 volts, então 4 baterias em paralelo também produzirão 1,5 volts, mas a corrente fornecida será 4 vezes maior do que a de uma única célula. O arranjo abaixo é chamado de arranjo serial. As 4 voltagens se somam para produzir 6 volts.
Normalmente, quando você compra um pacote de baterias, o pacote lhe diz a voltagem e a corrente da bateria. A minha câmera digital, por exemplo, usa 4 baterias de níquel-cádmio que estão classificadas em 1,25 volts e 500 miliampéres/hora para cada célula. Você pode dividir os miliampéres em muitas maneiras diferentes. Uma bateria de 500 miliampéres-hora poderia produzir 5 miliampéres por 100 horas, ou 10 miliampéres por 50 horas, ou 25 miliampéres por 20 horas, ou - teoricamente - 500 miliampéres por 1 hora, ou até mesmo mil miliampéres por 30 minutos.
Entretanto, as baterias não são tão lineares assim. Em primeiro lugar, todas as baterias têm uma corrente máxima que elas podem produzir. Uma bateria de 500 miliampéres-hora não pode produzir 30 mil miliampères por 1 segundo porque não existe uma maneira para que as reações químicas aconteçam tão rapidamente e a níveis tão altos de corrente. Uma bateria pode produzir muito calor, desperdiçando um pouco da sua energia. Muitos químicos nas baterias têm expectativa de vida mais curta ou mais longa em níveis muito baixos de corrente, mas as classificações de miliampères-hora são normalmente lineares. Usando a medida ampéres-hora, é possível estimar por quanto tempo a bateria vai durar sob uma certa carga.
Colocando 4 baterias de 1,25 volts e 500 miliampéres-hora em um arranjo serial, obtên-se 5 volts (1,25 X 4) a 500 miliampéres-hora. Estas mesmas baterias em paralelo, fornecerão 1,25 volts a 2 mil (500 X 4) miliampéres-hora.
Alguma vez você já olhou dentro de uma bateria de 9 volts comum?
http://static.hsw.com.br/gif/battery-9v1.jpg
http://static.hsw.com.br/gif/battery-9v2.jpg
Os fabricantes aconselham a não desmontar uma bateria para não causar danos a sua saúde
Ela contém 6 baterias muito pequenas que produzem 1,5 volts cada em umarranjo serial!
Para mais informações sobre as baterias e tópicos relacionados, acesse os links da próxima página.
=========================================================================================================================================================================================================================================================================================

Neste artigo
1. 
Introdução

2. 

3. 

4. 

Introdução

A eletricidade nos cerca por todos os lados. Para a maioria das pessoas, a vida moderna seria praticamente impossível sem ela. Veja aqui alguns exemplos:
·         Em todas as partes da casa, você provavelmente encontra tomadas onde pode ligar todo tipo de eletrodomésticos.
·         A maioria dos aparelhos portáteis precisa de baterias, que produzem uma quantidade variável de eletricidade, dependendo de seu tamanho.
·         Durante uma tempestade, gigantescos "deslocamentos" de eletricidade, normalmente chamados de relâmpagos, são disparados do céu.
·         Em uma escala muito menor, você pode levar choques deeletricidade estática em dias secos de inverno.
·         É fácil criar eletricidade com a luz do sol usando uma célula solar ou até mesmo criá-la a partir da energia química do hidrogênio e oxigênio usando uma célula de combustível.
Mas o que é a eletricidade? De onde ela vem e por que pode fazer tantas coisas diferentes?
A eletricidade que obtemos nas tomadas e baterias pode fornecer energia para diferentes tipos de aparelhos.
·         Motores elétricos transformam a eletricidade em movimento.
·         Lâmpadas, lâmpadas fluorescentes e LEDs (diodos emissores de luz) transformam a eletricidade em luz.
·         Computadores transformam eletricidade em informação.
·         Telefones transformam eletricidade em comunicação.
·         TVs transformam eletricidade em imagens.
·         Alto-falantes transformam eletricidade em ondas sonoras.
·         Armas de choque transformam eletricidade em dor.
·         Torradeiras, secadores de cabelos e aquecedores transformam eletricidade em calor.
·         Rádios transformam eletricidade em ondas eletromagnéticas que podem viajar milhões de quilômetros.
·         Aparelhos de raio-X transformam eletricidade em raios X.
É difícil imaginar pessoas no mundo moderno vivendo sem eletricidade. Na falta de eletricidade, voltamos a usar lareiras para obter calor, fogões a lenha para cozinhar, velas para iluminar, réguas de cálculo para fazer contas mais complicadas e para falar a longa-distância só nos restam cartas e cartões postais.
A eletricidade começa com elétrons. Se você leu Como funcionam os átomos, sabe que cada átomo contém um ou mais elétrons. Sabe também que os elétrons têm uma carga negativa.
http://static.hsw.com.br/gif/laser1.jpg
Um átomo em seu modelo mais simples
Em muitos materiais, os elétrons são fortemente ligados aos átomos: madeira, vidro, plástico, cerâmica, ar, algodão, todos são exemplos disso. Como os elétrons não se movem, esses materiais quase não conduzem eletricidade. São o que chamamos de isolantes elétricos.
Por outro lado, a maioria dos metais têm elétrons que podem se separar de seus átomos e se mover. Estes são chamados elétrons livres. Ouro, prata, cobre, alumínio e ferro, entre outros, contêm elétrons livres. Eles ajudam a eletricidade a fluir por esses materiais, que são conhecidos comocondutores elétricos, por conduzirem eletricidade. Os elétrons em movimento transmitem energia elétrica de um ponto a outro.
Geradores
A eletricidade precisa de um condutor para se mover. Assim como é necessário algo para fazê-la fluir através do condutor. Uma maneira de fazer com que a eletricidade seja conduzida é usar um gerador. Os geradores usam um ímã para fazer os elétrons se moverem.
Há uma conexão explícita entre eletricidade e magnetismo. Se você deixar os elétrons se moverem por um fio, eles criam um campo magnético ao redor dele (veja Como funcionam os motores elétricos e Como funcionam os eletroímãs para mais detalhes). De maneira similar, se você mover um ímã perto de um fio, o campo magnético fará com que seus elétrons se movam.
http://static.hsw.com.br/gif/motor.gif
Um gerador é um aparelho simples que move um ímã perto de um fio para criar um fluxo estável de elétrons.
Uma maneira simples de pensar em um gerador é imaginá-lo atuando como uma bomba d'água. Ao invés de água, o gerador usa o ímã para produzir elétrons. Isso é uma simplificação exagerada, mas uma analogia útil.
Há duas coisas que uma bomba d'água pode fazer com a água:
1.    Mover um certo número de moléculas de água.
2.    Aplicar uma certa pressão sobre as moléculas de água.
Da mesma maneira, o ímã em um gerador pode:
1.    Deslocar um certo número de elétrons.
2.    Aplicar uma certa "pressão" sobre os elétrons.
Em um circuito elétrico, o número de elétrons em movimento é chamadoamperagem ou corrente, que é medida em ampères. A "pressão" sobre os elétrons é chamada voltagem e é medida em volts. Por isso, você pode ouvir alguém dizer: "se você girar o gerador a 1.000 rpm, pode produzir 1 ampère em uma tensão de 6 volts". Um ampere é o número de elétrons em movimento (fisicamente, 1 ampère significa que 6,24 x 1018 elétrons se movem por um fio a cada segundo). A voltagem, por sua vez, é a quantidade de pressão sobre esses elétrons.
Circuitos elétricos
Independentemente de estar usando uma bateria, uma célula de combustível ou uma célula solar para produzir eletricidade, há três coisas que permanecem as mesmas:
http://static.hsw.com.br/gif/battery.gif
·         A fonte de eletricidade terá dois terminais: um positivo e um negativo.
·         A fonte de eletricidade (mesmo sendo um gerador, bateria, etc.) vai tentar deslocar elétrons para fora de seu terminal negativo com uma certa voltagem. Por exemplo, uma pilha AA desloca elétrons a 1,5 volts.
·         Os elétrons precisam fluir do terminal negativo para o terminal positivo através de um fio de cobre ou outro condutor. Quando há um caminho que vai do terminal negativo para o positivo, há umcircuito e elétrons podem correr pelo fio.
·         Você pode conectar um dispositivo de qualquer tipo (umalâmpada, um motor, uma TV, etc.) no meio do circuito. A fonte de eletricidade vai fornecer energia para o dispositivo e este, por sua vez, irá fazer seu trabalho (criar luz, girar um eixo, gerar imagens, etc.).
Circuitos elétricos podem ser bastante complexos. Mas você sempre terá uma fonte de eletricidade (uma bateria, etc.), um dispositivo (lâmpada, motor, etc.), e dois fios para carregar eletricidade entre a bateria e o dispositivo. Os elétrons se movem da fonte para o dispositivo, e novamente de volta à fonte.
Os elétrons em movimento possuem energia. E, movendo-se de um ponto a outro, podem fazer muitos trabalhos. Em uma lâmpada incandescente, por exemplo, a energia dos elétrons é usada para gerar calor e o calor cria luz. Em um motor elétrico, a energia nos elétrons cria um campo magnético e este campo pode interagir com outros ímãs (por atração e repulsão magnéticas) para criar movimento. Cada aparelho elétrico usa a energia dos elétrons de alguma maneira para criar um efeito colateral útil.
E os relâmpagos?
http://static.hsw.com.br/gif/lightning-nasa.jpg
Imagem cedida pela NASA
Se o ar é um isolante, então como um relâmpago pode sair de uma nuvem para o solo através de um material não-condutor? No caso dos relâmpagos, há tanta energia elétrica armazenada entre a nuvem e o solo que, em algum momento, a energia consegue destacar elétrons dos átomos no ar. Assim que esse processo começa, o ar se torna um plasma (um estado separado de matéria onde há muitos elétrons livres criados por calor ou alta voltagem - vejaComo funciona o cortador de plasma para saber mais sobre esse estado). Assim que se transforma em plasma, o ar pode facilmente conduzir eletricidade com os elétrons livres e o relâmpago acontece através dessecondutor de plasma.
Esse mesmo processo permite que uma faísca passe pelos condutores de uma vela de ignição ou de um arma de choque e também carregue eletricidade através de um tubo fluorescente.



Como funciona a eletricidade
por Marshall Brain - traduzido por HowStuffWorks Brasil

Neste artigo
1. 

2. 
Voltagem, corrente e resistência

3. 

4. 

Voltagem, corrente e resistência

http://static.hsw.com.br/gif/light-bulb-intro.gif
Leve em consideração uma tomada de 120 volts e imagine que você liga um aquecedor de ambientes nessa tomada. Meça a quantidade de corrente fluindo da tomada para o aquecedor, e você verá que são 10 ampères. Isso significa que é um aquecedor de 1.200 watts.
Volts * ampères = watts
Então 120 volts * 10 amps = 1.200 watts.
Isso serve para qualquer aparelho elétrico. Se você conecta uma torradeirae ela usa 5 ampères, é uma torradeira de 600 watts. Se você conecta uma lâmpada e ela consome 1/2 ampère, é uma lâmpada de 60 watts.
Vamos supor que você ligue o aquecedor de ambientes, saia e observe omedidor de força. O objetivo do medidor de força é medir a quantidade de eletricidade utilizada em sua casa para que a companhia de luz possa cobrá-lo. Vamos supor que mais nada na casa esteja ligado, de maneira que o medidor esteja medindo apenas a eletricidade usada pelo aquecedor.
Seu aquecedor está usando 1.200 watts. Isto é 1,2 kilowatts, um kilowatt é 1.000 watts. Se você deixar o aquecedor ligado por uma hora, vai consumir 1,2 quilowatt/hora de força. Se a companhia de luz cobrar 10 centavos por quilowatt-hora, então sua conta será de 12 centavos por cada hora de uso do aquecedor.
1.2 quilowatts * 1 hora = 1.2 quilowatt-hora
1.2 quilowatt-hora * 10 centavos por quilowatt-hora = 12 centavos
Da mesma maneira, se você tiver uma lâmpada de 100 watts e deixá-la ligada por 10 reais horas, vai consumir 1 quilowatt-hora (100 watts * 10 horas = 1 quilowatt-hora).
Se você tem uma bomba de calor de 20.000 watts e a deixa ligada por cinco horas todos os dias, vai consumir 100 quilowatts-hora por dia (20 quilowatts * 5 horas = 100 quilowatt-hora) ou 10 dólares de luz por dia se um quilowatt-hora custar 10 centavos. Se fizer isso por um mês, sua bomba de calor custa (30 * R$ 10,00) R$ 300,00 por mês. É por isso que sua conta de luz fica tão alta quando o clima está muito frio. A bomba de calor consome muita energia.
As três unidades mais básicas em eletricidade são voltagem (V), corrente (I) e resistência (r). Como discutido antes, a voltagem é medida em volts, e a corrente é medida em ampères. A resistência é medida em ohms.
Podemos continuar com a analogia da água para entender sobreresistência. A voltagem é equivalente à pressão da água, a corrente é equivalente à taxa de fluxo e a resistência é como o tamanho do cano.
Há uma equação básica em engenharia elétrica que diz como os três termos são relacionados. Ela afirma que a corrente é igual a voltagem dividida pela resistência.
I = V/r
Vamos supor que você tenha um tanque de água pressurizada conectado a uma mangueira que está sendo usada para molhar o jardim. O que acontece se você aumentar a pressão no tanque? Pode-se supor que isso fará sair mais água da mangueira. O mesmo acontece em um sistema elétrico:aumentar a voltagem vai fazer mais corrente fluir.
Suponhamos que você aumente o diâmetro da mangueira e de todos os ajustes do tanque. Sabe que provavelmente isso também fará sair mais água da mangueira. É o mesmo que diminuir a resistência em um sistema elétrico, pois aumenta o fluxo de corrente.
Quando você olha para uma lâmpada incandescente normal, pode ver fisicamente essa analogia da água em ação. O filamento da lâmpada é um pedaço de fio muito fino. Este fio causa resistência ao fluxo de elétrons. Você pode calcular a resistência do fio com sua equação específica.
Vamos supor que você tenha uma lâmpada de 120 watts ligada em uma tomada. A voltagem é 120 volts e a lâmpada de 120 watts tem 1 ampère correndo através dela. Você poderá calcular a resistência do filamento reorganizando a equação: r = V/I. A resistência será então de 120 ohms. Caso seja uma lâmpada de 60 watts, a resistência irá para 240 ohms.
Corrente contínua x corrente alternada
Baterias, células de combustível e células solares produzem algo chamadocorrente contínua (CC). Os terminais de uma bateria são, respectivamente, positivo e negativo. A corrente contínua sempre flui no mesmo sentido entre eles (lembre-se que a corrente se desloca em sentido oposto ao dos elétrons).
A força que vem de uma usina de energia, por outro lado, é chamadacorrente alternada (CA). O sentido da corrente reverte, ou alterna, 60 vezes por segundo (nos EUA) ou 50 vezes por segundo (na Europa, por exemplo). A energia elétrica que está disponível nas tomadas dos Estados Unidos é de 120 volts, e com 60 ciclos para a CA.
A grande vantagem da corrente alternada para a rede elétrica é o fato de ser relativamente fácil mudar a voltagem, usando um aparelho chamadotransformador. Com o uso de voltagens muito altas para transmitir energia para longas distâncias, as companhias de luz economizam muito dinheiro. É assim que isso funciona.
Supondo que você tenha uma usina de energia que produza 1 milhão de watts de potência, uma maneira de transmitir essa potência seria enviar 1 milhão de ampères a 1 volt. Outra maneira seria enviar 1 ampère a 1 milhão de volts. Enviar 1 ampère exige apenas um fio fino e pouca energia é perdida na forma de calor durante a transmissão. O envio de 1 milhão de ampères exigiria um fio enorme.
Então, para transmissão de energia, as companhias de luz utilizam voltagens muito altas para transmissão (por exemplo 1 milhão de volts), depois diminuem novamente para voltagens mais baixas para a distribuição (por exemplo 1.000 volts) e, finalmente, diminuem para 120 volts dentro da casa, por segurança (veja Como funcionam as redes elétricas para mais detalhes).
Fio terra 
Quando o assunto é eletricidade, você sempre ouve falar do uso do fio terra, ou simplesmente terra. Por exemplo, uma informação no gerador elétrico dirá: "certifique-se de conectar um fio terra antes de usar" ou "não use sem aterramento apropriado".
Acontece que a companhia elétrica usa um dos fios do sistema de força ligado à terra. Ela é um excelente condutor, além de ser um ótimo caminho para o retorno dos elétrons. Aterramento na rede de distribuição elétrica, corresponde ao contato com a terra propriamente dita ou com o que estiver sob o solo.
O sistema de distribuição de força conecta-se com solo muitas vezes. Por exemplo, nesta foto você pode ver que um dos fios é destacado como um fio terra.
http://static.hsw.com.br/gif/power-parts.gif
Na foto abaixo, o fio exposto, vindo pela lateral do poste, conecta o fio terra aéreo diretamente ao chão.
1 - Entrevista ao Engenheiro Joaquim Pereira

Entrevista ao Engenheiro Joaquim Pereira no dia 03 de agosto de 2008 à Man-IT, com relação às dúvidas sobre NR-10.

O Engenheiro Elétrico Joaquim Gomes Pereira é um profissional de Engenharia de Segurança no Trabalho, atuante há 27 anos como Auditor Fiscal do MTE e Coordenador da NR10.

Entrevista:

Man-it - Quantas horas devem ter o treinamento de reciclagem NR10 básico e SEP, quando estes têm sua validade vencida após dois anos do último treinamento?
Man-it - Qual o conteúdo programático para o treinamento de reciclagem NR10 básico e SEP?
Eng. Joaquim - R1 e R2: Os treinamentos de reciclagem, conforme NR10, não definem especificamente conteúdo programático ou carga horária, e nem mesmo recursos a serem utilizados, porém fica evidente que os assuntos abordados deverão ser da mesma natureza dos treinamentos regulamentados anexo III da Norma Regulamentadora nº 10, alterada pela Portaria 598/04, ou seja, "segurança em serviços e instalações elétricas". Por outro lado, ficou definido o período da reciclagem, ou o momento com base nos subitens:
a) troca de função ou mudança de empresa - (então o foco da RECICLAGEM deverá ser direcionado a troca de função entendida como alteração em atribuições ou local de trabalho, que carreia a alteração do cenário de desenvolvimento dos trabalhos e assim alterações de exposição a riscos elétricos);
b) retorno de afastamento ao trabalho ou inatividade por período superior a três meses - (então o foco da RECICLAGEM será atualizar e renovar os conceitos e práticas de prevenção nos conteúdos propostos);
c) modificações significativas nas instalações elétricas ou troca de métodos, processos e organização do trabalho - (foco da RECICLAGEM nas mudanças do panorama das instalações, na inclusão de novos equipamentos e metodologias, assim como as alterações na organização do trabalho).

Contudo quando a motivação da reciclagem for bienal então o foco deverá ser o aprofundamento e direcionamento de acordo com as necessidades e a realidade da organização e que atenda com carga horária suficiente para permitir aproveitamento em revisões, nas mudanças que se processaram nos procedimentos, instalações e serviços, de forma a surtir o efeito desejado na prevenção de acidentes.

Transparece neste item o viés de gerenciamento e responsabilidade que norteia esta norma. Fica a critério de a empresa estabelecer esses currículos e cargas horárias das reciclagens e, por conseguinte, assumir a responsabilidade pela decisão, contudo me parece errônea a idéia de desenvolver uma carga de ensino de forma "genérica", sem considerar as necessidades da empresa e dos profissionais objeto da reciclagem.

Por outro lado, não será cabível, na reciclagem, a inserção de ensino destinado ao item técnico "eletricidade", pois esse assunto é parte da capacitação do profissional e não pode ocupar o espaço destinado ao saber de prevenção de acidentes com energia elétrica. Se o profissional não domina eletricidade será necessário encaminhá-lo para escola técnica.

A reciclagem bienal deve ter as necessidades de prevenção aos riscos elétricos da empresa, ser desenvolvida como sapatos, com número e formatação do usuário, não pode ser uma pizza "genérica" para cumprir a Lei, pois nesse caminho a empresa estará atendendo a legislação, mas não agregará valor ao seu quadro de empregados e as melhorias de qualidade.

Para sua orientação, o foco da reciclagem deve ser os acidentes da empresa, as mudanças nos métodos e equipamentos, as atualizações de procedimentos ocorridos desde o último treinamento, os relatórios da NR10 (obrigatório conforme Norma), etc.


Man-it - O treinamento feito por pessoa física (particular) tem validade para admissão na empresa?
Eng. Joaquim - R3: Os treinamentos preconizados na Norma, acima mencionada, destinados a trabalhadores a serem "autorizados" por seu(s) tomador(es) de serviço(s) a intervir em instalações ou realizar serviços elétricos, e ministrados por instituição, organização ou a própria empresa mediante o concurso de profissionais com curso específico nas áreas de saber envolvidas nos treinamentos. É atribuição dos conselhos de classe definir os profissionais "habilitados" a ensinar nas áreas de saber necessárias aos treinamentos, ou seja, elétrica, segurança no trabalho e de medicina. É evidente que os itens da Norma estão destinados à promoção de transferência de conhecimento em segurança elétrica, do trabalho e de medicina e resgate, específicos e próximos da realidade de cada empresa, das situações efetivas de trabalho e nas condições reais das atividades a serem desenvolvidas pelos autorizados.


Man-it - No momento da contração, a empresa pode exigir do candidato o treinamento de NR10?
Eng. Joaquim - R4: Sim, contudo deve reciclá-los nos treinamentos básico e complementar, nas situações regulamentadas no item 10.8.8.2 e alíneas. A alínea "a" - obriga à reciclagem quando houver "mudança de empresa". É bastante lógico que a mudança de empresa acarreta a ocorrência de alterações em atribuições, no local de trabalho, na classe e modelos de instalações elétricas, na mudança de procedimentos de trabalho etc. E assim, promove alterações de exposição a riscos elétricos.


Man-it - Quem tem que fazer o treinamento NR10 básico?
Eng. Joaquim - R5: Todos os trabalhadores a serem "autorizados", conforme prevê a NR10.


Man-it - Quem tem que fazer o treinamento NR10 SEP?
Eng. Joaquim - R6: Todos os trabalhadores a serem "autorizados" a atividades no SEP e a trabalhos em suas proximidades, conforme prevê a NR10.


Man-it - Qual a qualificação do docente para aplicar o treinamento NR10 básico e SEP?
Eng. Joaquim - R7: Idem resposta R3.


Man-it - Como é dada a validação destes treinamentos?
Man-it - Uma empresa privada pode oferecer este treinamento desde que tenha um profissional capacitado e habilitado?
Eng. Joaquim - R8 e R9: Já respondido na R3.

Man-it - Quais os riscos que esta empresa que oferece este treinamento assume perante seus clientes quando assina um certificado de conclusão destes treinamentos?
Eng. Joaquim - R10: Os riscos preconizados nos códigos civil e criminal.


Man-it - Há um empregado em uma determinada empresa que fez o treinamento de NR10 - Básico e ou SEP em Junho de 2008 e em julho ele deixou a empresa e começou a trabalhar em outra empresa completamente distinta da primeira. A legislação exige que ele faça um novo treinamento. Como é interpretado pelo MTE quando a nova empresa acredita que a validade do treinamento é dada pelo certificado que o novo empregado possui com a assinatura da última empresa?
Eng. Joaquim - R11: Vide resposta R4.
==========================================================================================================================================================

Entrevista Eng Joaquim / Vestimenta

Eng. Joaquim Gomes Pereira - NR10

Chefe dos auditores fiscais DRT-SP, En g. Eletricista e de Segurança no Trabalho, coordenador do GTT da NR-10 e Docente de cursos de Engenharia de Segurança no trabalho o Eng. Joaquim Gomes, em entrevista concedida com exclusividade à Protenge, tem esclarecido algumas dúvidas quanto a nova NR-10.

Protenge: As vestimentas para uso dos eletricistas, conforme estabelecido na NR-10, ítem 10.2.92, devem ser de uso diário ou somente quando o profissional adentrar em uma cabine primária ou subestação?
Eng. Joaquim Gomes: O uso das vestimentas especiais para a proteção do trabalhador autorizado (ítem 10.8 da Norma) contra os potenciais efeitos térmicos dos arcos voltaicos, conforme NR10, ítem 10.2.9.2, deve ser de uso PERMANENTE durante o desenvolvimento das atividades envolvendo serviços com instalações elétricias, sejam elas em painéis elétricos, circuitos, quadros elétricos, CCM, subestações (cabines), etc...
Salientamos que essas vestimentas especiais devem proteger contra a inflamabilidade e, portanto, constituem-se em Equipamento de Proteção Individual - EPI, devendo possuir o Certificado de Aprovação - CA, expedido pelo Ministério do Trabalho e Emprego.
Finalmente queremos observar que tais vestimentas devem ser objeto de análise de risco contendo o ´cálculo da gramatura adequada à energia incidente a que se expõe, potencialmente, os autorizados.
Questionário para cálculo de energia incidente

Protenge: As vestimentas devem contemplar os riscos de fogo e calor? O profissional deverá usar os EPI´s para proteção ao choque elétrico?
Eng. Joaquim: As vestimentas especiais destinam-se à proteção do tronco, membros superiores e inferiores do trabalhador autorizado contra os potenciais efeitos térmicos dos arcos voltaicos, neles incluído o fogo e o calor. As vestimentas são parte dos EPI´s necessários devendo os trabalhadores também estarem protegidos contra os choques elétricos (calçado especial para atividades com energia elétrica, luvas isolantes, capacete, óculos de segurança, mangotes isolantes, etc...)
Ainda, os trabalhadores com instalações elétricas, devem estar protegidos contra os demais grupos ou fatores de risco, além dos elétricos, específicos de cada ambaiente ou processos de trabalho que, direta ou indiretamente, possam afetar a segurança e a saúde no trabalho.

Protenge: A Norma deixa claro que, não só quem trabalha diretamente com eletricidade deve usar estas vestimetnas, mas também quem trabalha indiretamente. Como identificar estes profissionais que embroa não trabalhem diretamente com eletricidade, devem usar as vestimentas?
Eng. Joaquim Gomes: A Norma no seu caput (item 10.1.2) abrange quaisquer trabalhos realizados nas "PROXIMIDADES" das instalações elétricias, além, obviamente das atividades desde a produção até o consumo final da energia elétrica, abrangendo as etapas do projeto (planejamento, levantamentos, medições...), construção (preparação, montagens e ampliações), operação (supervisão, controles, ação e acompanhamentos), manutenção (diagnóstico, reparação, substituição de partes e peças, testes).
Exemplo desses trabalhos (tarefas ou atividades) realizados em ambientes circunvizinhos sujeitos às influencias das instalaçaões elétricas ou execução de serviços elétricos que lhes são próximos, realizadas em instalações telefônicas, TV a Cabo e iluminação pública instaladas em estruturas de distribuição e transmissão de energia elétrica, ou trabalhadores em geral (construção, manutenção, operação não elétricas), mas que realizam suas atividades e serviços nas proximidades de zona controlada definida no anexo II.

Os trabalhadores das emepresas de telefonia estão obrigados a usar as vestimentas conforme estabelece a NR 10?
Sem dúvida as atividades em telefonia desenvolvidas em estruturas de distribuição e transmissão de energia elétrica tem muito risco e elevado numero de acidentes fatais, devendo o trabalhador envolvido estar protegido contra esses riscos e, dependendo das atividades e análise de risco, devem usar as vestimentas de proteção.

Protenge: As empresas estão assimilando esta nova forma de gerenciar os serviços na área elétrica ou estão apenas executando algumas exigencias só para "inglês" ver?
Eng. Joaquim Gomes: De forma geral as empresas estão assimilando e implantando as medidas determinadas pela nova Norma 10 e o Ministerio do Trabalho e Emprego vem, atentamente, acompanhando a implementação da Norma.
Contudo cabe-nos ressaltar que a NR10 é a BASE TÉCNICA LEGAL para aplicabilidade de sentenças judiciais criminais e cíveis (MJ); paralização das atividades ou TAC (MPT); multas arbitradas (MPT) e ações regressivas (MPAS).
=========================================================================================================================================================


1 - SEGURANÇA EM INSTALAÇÕES ELÉTRICAS DEPENDE DE INSPEÇÃO E MANUTENÇÃO ADEQUADAS

Os projetos de instalações elétricas industriais precisam considerar, com o devido cuidado, a presença de produtos inflamáveis nos processos, de forma a especificar equipamentos elétricos especiais que garantam a segurança da instalação.
É imprescindível o atendimento aos requisitos técnicos e legais nestas condições, em que o risco de explosões possa estar presente. Portanto, os equipamentos elétricos e eletrônicos destinados às funções de comando, iluminação, controle, monitoração e força, e que estejam instalados em locais com possibilidade de formação de mistura explosiva, devem ser cuidadosamente especificados, pois um equipamento elétrico inadequado poderá ser capaz de causar uma explosão. Porém não é suficiente apenas comprar o equipamento elétrico ou eletrônico. É necessário que ele seja instalado corretamente e que a manutenção preventiva seja executada periodicamente, garantindo que ele preservará as condições originais ao longo de sua vida útil.
Podemos citar como exemplo de indústria que requer tais cuidados a alcooleira. Devido à natureza das substâncias envolvidas, os processos neste tipo de indústria apresentam possibilidade de formação de misturas gasosas inflamáveis no ambiente. Caso esteja presente uma fonte de risco que possa promover a ignição desta mistura inflamável, seja uma fonte de calor ou mesmo a centelha de um circuito elétrico, poderá ocorrer uma explosão com consequências desastrosas para a planta e para a comunidade vizinha.
No Brasil, o parque industrial está sendo ampliado devido ao aumento do uso do metanol na matriz energética. O metanol é inflamável e solúvel em água, portanto deve-se tomar cuidado principalmente com o aparecimento de faíscas, que podem surgir na operação de equipamentos elétricos, nas proximidades dos locais com processos envolvendo metanol. Explosões em plantas de álcool sempre registraram elevados prejuízos, como pode ser verificado a seguir.

Fonte:
Revista Proteção
www.protecao.com.br
Janeiro 2012


1 - RISCO OU PERIGO

Não é de hoje que se confrontam os conceitos dos dois termos “risco” e “perigo”. Alunos da especialização em engenharia de segurança, ao pesquisarem para elaborar suas monografias, encontram o problema e são questionados nas suas apresentações.
Os conceitos dos termos risco e perigo, não se encerram na definição. Temos outras aplicações e termos derivados que dependem fundamentalmente do conceito do termo rais, no nosso idioma.
Recentemente, um artigo publicado intitulado “Equipamentos de Proteção Individual”, cujos trechos são transcritos, dizia o engenheiro Edson Martinho, batalhador pela segurança com eletricidade e co-fundador da Abracopel:
“Consultando a internet conseguimos várias definições de risco e de perigo e algumas são descritas abaixo”:
Risco: É a probabilidade ou chance de lesão ou morte (Sanders e McCormick) ou uma ou mais condições de uma variável com pontencial necessário para causar danos (De Cicco e Fantazzini) ou, ainda, é a probabilidade potencial de causar danos nas condições de uso e/ou exposição, bem como a possível amplitude do dano (definição pela Comissão Europeia).
A norma EM 50110, norma utilizada pela comunidade Europeia para segurança em trabalhos com eletricidade define o risco como sendo:
“combinação da probabilidade e da gravidade da possível lesão ou dano para a saúde de uma pessoa exposta a um ou vários perigos”.
Perigo: É uma condição ou conjunto de circunstâncias, que tem potencial de causar ou contribuir para lesão ou morte (Sanders e McComick) ou expressa uma exposição relativa ao risco, que favorece sua materialização em danos (De Cicco e Fantazzini) ou ainda é a propriedade ou capacidade intrínseca dos materiais, equipamentos, métodos e práticas de trabalho, potencialmente causadora de danos (definição pela Comissão Europeia).
Questionado sobre o assunto, o engenheiro Jorge Reis, respeitável ex-pesquisador da Fundacentro, responsável pela elaboração de normas regulamentadoras e por inúmeras outras contribuições para área de engenharia de segurança esclarece:
1- As definições em inglês envolvem os termos “damage, risk e hazard”.
2- Ao ser feita a tradução, profissionais que trabalhavam na Fundacentro não atentaram para a legislação nacional e, inadvertidamente, usaram a palavra “perigo”, quando a versão dessa palavra seria “danger” em inglês.
3- Em nossa legislação fica bem claro que o perigo advém do risco acentuado e sem controle; ao se procurar traduzir a palavra por semelhança, corre-se o risco (perigo??) de cometer falhas grotesca. Por exemplo, se você traduzir “push” por “puxe”, não conseguirá abrir nenhuma porta, pois “puxe” seria “pull” e “push” entende-se como “empurrar”.
4- Todos os trabalhadores em português que se basearam naquela tradução carregam a mesma inadequação.
5- Como já discutimos intensamente, no GTTE, grupo Técnico Tripartite que antecedeu a NR 10, apesar de ser considerado um risco, um revólver vai representar perigo no momento em que ele será carregado ou não, se está em suas mãos, nas mãos de um policial ou apontado para sua cabeça por um bandido, ou seja, pelo próprio bom senso, a palavra “perigo” não representa uma constante, mas uma variável cuja intensidade muda em função da forma como o risco (revólver) se apresenta!
Ou ainda, uma piscina cheia de água é um risco para uma pessoa que não saiba nadar, e um perigo quase nulo se a pessoa estiver a um quilômetro de suas bordas, mas vai se tornando um perigo maior à medida que essa pessoa se aproxima dela.
Em inglês, pode-se verificar que “hazard” não é simples sinônimo de “danger”, cada palavra reflete um conceito distinto.
Não foi por acaso que a NR 10 trouxe no glossário a definição dos termos. Antes de ser escrito, o glossário foi objeto de consulta e de muita discussão. Posteriormente, a norma foi a consulta pública, recebeu contribuições, críticas e abservações que depois de consolidadas resultaram em cerca de 500 folhas de papel.
Acrescentaria aos exemplos do engenheiro Jorge Reis a altura, que representa um risco (risco de altura) cujo perigo esta na possibilidade da queda. O risco (altura) é o mesmo dentro da sala no alto de um edifício, mas o perigo só existirá se houver a possibilidade de queda, por ausência de medidas de proteção.
Muito mais delicado e não menos aplicável é o conceito que acaba tentando tomar espaço nessa polêmica, quando se procura definir a periculosidade. Ora, o conceito de periculosidade está efetivamente atrelado à exposição ao risco. Só se está exposto ao risco quando ele não estiver satisfatoriamente controlado, o que é uma medida do perigo, esta sim uma medida inversamente proporcional às medidas de segurança e de controle.
O risco é característica própria da grandeza que se discute (altura, eletricidade, explosão, incêndio). Para o perigo são consideradas as medidas de proteção e as circunstâncias que envolvem o controle do risco.
Concluindo, os termos estão definidos na Norma Regulamentadora legal (por medida de segurança) para evitar que (se manifesta o risco de) uma interpretação errada, o que seria um perigo.
18. Perigo: situação ou condição de risco com probabilidade de causar lesão física ou dano à saúde das pessoas por ausência de medidas de controle.
22. Risco: capacidade de uma grandeza com potencial para causar lesões ou danos à saúde das pessoas.
Glossário da NR 10
Fonte:
Revista O Setor Elétrico – Ano 7 – Edição 73
Fevereiro de 2012


1 - PECULIARIDADES DA INSTALAÇÃO

Em continuidade aos questionamentos que frequentemente cercam os debates envolvendo segurança do trabalho, a coluna deste mês dá prosseguindo ao assunto iniciado na edição passada, que diz respeito ao adicional de periculosidade por eletricidade e à Orientação Jurisprudencial (OJ-324) utilizada indevidamente como diploma de generalização do que estabelece a Lei n. 7.369/85.
Um fator de distinção entre as instalações de suprimento (setor elétrico) e a sua utilização (consumo) são as condições de desligamento, quando existem, e as influências da vizinhança. As instalações do sistema elétrico de potência, quando seccionadas para trabalho em circuito desenergizado, o são habitualmente a distâncias consideráveis do local de trabalho, fora do alcance visual e do controle dos trabalhadores envolvidos na execução dos serviços, exigido sistemas de comunicação que também inserem maior possibilidade de falhas.
Somam-se à existência de trechos longos e à influência de circuitos vizinhos próximos (indução) os fenômenos atmosféricos, visto que a maioria das instalações está localizada em áreas externas e desabrigada, fatores agravantes próprios do SEP (setor elétrico). Por serem instalações que ocupam áreas de uso público sujeitas a influências imprevisíveis e cujo controle escapa aos trabalhadores, as instalações do SEP apresentam mais este risco adicional. Já nas instalações de consumo, a aplicação de técnicas e medidas administrativas de segurança associadas à inexistências das características de área de uso público eliminam esse agravante.
Há de se considerar, além das tensões empregadas, muito maiores no SEP (setor elétrico), os valores das potências de curto-circuito, que impõem a ocorrência de arcos elétricos consideráveis maiores que aqueles encontrados habitualmente nas instalações de consumo.
Diferentemente das instalações do SEP, nas instalações de consumo e utilização de eletricidade, há técnicas de proteção que garantem a desenergização dos circuitos, o efetivo controle dos trabalhadores sobre as chaves e dispositivos de manobra e uma sensível independência das instalações, o que reduz drasticamente a influência de um circuito. A principal técnica de proteção utilizada no SEP se resume ao distanciamento, à colocação fora de alcance, o que permite o uso de condutores nus e equipamentos com as partes energizadas expostas, as quais, no caso de intervenção, ficam na zona de alcance normal dos trabalhadores, daí a sua segurança depender fundamentalmente de seu conhecimento e dos equipamentos de proteção individual.
Ao contrário, nas instalações industriais, prediais e comerciais, as técnicas principais são a isolação das partes vivas (fios e cabos encapados) e o uso de invólucros e barreiras (caixas e recursos que impedem todo e qualquer contato com as partes energizadas).
Há de se considerar ainda as condições de trabalhos que envolvem sistematicamente os trabalhadores do setor elétrico, no que diz respeito às influências externas e condições ambientais, absolutamente adversas da maioria das condições de operação das empresas consumidoras de eletricidade e das instalações de consumo em geral, em que influências externas e ambientais são rigorosamente conhecidas e podem ser controladas.
Foi certamente com essas considerações que se incluiu, no quadro anexo do Decreto n. 9.3412/86, como áreas de risco também aquelas dos pátios e subestações, inclusive de consumidores, assegurados o mesmo tratamento aos trabalhadores do setor elétrico que venham a operar nessas áreas por operarem em instalações e locais com as mesmas características e peculiaridades encontradas no SEP (ora ratificado pela OJ-324).
Ao mesmo tempo em que o quadro do Decreto n. 93.412/86 menciona esses locais, fazendo uma referência específica (inclusive consumidores), fica muito claro que se incluíram essas instalações de consumidores e faz essa menção, posto que as demais não estejam aí incluídas.
Com um zelo louvável, especial e incomum, o texto da OJ-324 cuidou de delegar ao especialista avaliar se a situação em análise é em verdade similar: “...façam com equipamentos e instalações elétricas similares que ofereçam risco equivalente...”.
Este é um assunto que continua dependendo do conhecimento do perito e a equivalência de risco não se estabelece por acaso ou por palpite. São vários os aspectos a serem analisados para concluir pela similaridade dos equipamentos ou instalações e pela equivalência de risco, sem o que não se aplica à OJ-324.
Vemos nesta OJ-324 um esclarecimentos de grande serenidade e equilíbrio, o qual, da mesma forma como o parecer 173/86 do professor Amauri Mascaro Nascimento, então consultor jurídico do Ministério do trabalho, deve guiar o trabalho pericial de especialistas, pois estes entendem que a presença da eletricidade é apenas um dos aspectos em análise e que há peculiaridades das instalações que vão efetivamente definir a existência ou não da exposição dos trabalhadores ao risco elétrico dentro das premissas estabelecidas pela Lei e regulamentadas pelo Decreto.

Fonte:
Revista o Setor Elétrico – Ano 6 – Edição 72
Janeiro 2012



1 - ADICIONAL DE PERICULOSIDADE POR ELETRICIDADE

“É assegurado o adicional de periculosidade apenas aos empregados que trabalham em sistema elétrico de potência em condições de risco ou que o façam com equipamentos e instalações elétricas similares, que ofereçam risco equivalente, ainda que em unidade consumidora de energia elétrica”.
Ref.: OJ nº 324 da SDI do C. TST.

Nos eventos em que se aborda a segurança com eletricidade, objeto da NR 10, frequentemente, afloram questionamentos sobre adicional de periculosidade por eletricidade e, por conseqüência, a Orientação Jurisprudencial (OJ-324) utilizada indevidamente como diploma de generalização do que estabelece a Lei 7369/85. Por essa razão, segue para começar o ano de 2012 uma abordagem com algumas considerações técnicas para avaliação. Desejo aos que nos prestigiam com sua atenção, um ano repleto de sucesso e realizações, com saúde e paz.
São mais de 25 anos desde que foi sancionada a Lei 7369/1985, a qual todos sabemos ser fruto de uma demanda antiga dos eletricitários, trabalhadores do setor de energia elétrica, cuja exploração era monopólio governamental por meio de empresas que o Estado era acionista ou proprietário.
Impossibilitado de oferecer aumentos salariais para o setor isolado, o governo optou, na época, por atender à reivindicação antiga que elevasse a remuneração de categoria isolada pela concessão de uma gratificação por exposição ao risco elétrico, característica das condições de trabalho no setor elétrico e cujo mérito não é só nosso objetivo discutir.
Sancionada a Lei 7390 e publicada a Portaria 3.471 (de 17/10/1985), estipulando prazo de 90 dias para a apresentação de regulamentação, passou-se à elaboração do que seria o Decreto 92.212 e respectivo quadro anexo, que contou com a total e valiosa colaboração da Associação dos Engenheiros da Eletropaulo, encaminhada através do Sindicato dos Eletricitários de São Paulo, e que culminou no Decreto 92.212, posteriormente substituído pelo 93.412/1986.
O texto dos Decretos 92.212/1985 e 93.412/1986, em alguns pontos, extrapolou os termos da Lei 7369 ao tratar do pagamento proporcional, e em outros, deixou a desejar, especialmente quando mencionou os pátios e subestações, inclusive consumidoras, e que podem também ser acessadas por trabalhadores que não são do setor de energia elétrica, como estabelece a Lei.
Mas o Decreto, sabendo-se a sua origem, utilizou termos técnicos e específicos em total conformidade com o que estabelece a Lei, ou seja, apenas adotou a nomenclatura técnica (na regulamentação) daquilo que a Lei, através do legislador, chamou com o nome leigo de “Setor de energia elétrica”, identificado no linguajar especifico do Decreto, como “Sistema Elétrico de Potência (SEP)”, de acordo com o vocabulário técnico vigente e consagrado, mesmo quando traduzido para outro idioma.
Ora, todos os especialistas e pessoas envolvidas com assunto técnico de eletricidade sabem que as atividades e as condições de trabalho nas instalações do setor elétrico, isto é, SEP, que compreendem geração, transmissão e distribuição de energia elétrica, salvas raras oportunidades, quase nada tem a ver com as instalações destinadas ao consumo e à utilização de energia elétrica em ambientes industriais, domésticos ou comerciais.
As instalações do SEP, setor elétrico, em especial na distribuição, têm configuração predominantemente linear em que não são previstos dispositivos de seccionamento individual se não de grandes consumidores. Já nas instalações de consumo e utilização (industriais, comércio e condomínios), a configuração predominante é radial, o que permite facilmente o desligamento seletivo de cargas, individualmente e sem prejuízo do funcionamento do restante da instalação.
Nas instalações de distribuição e suprimentos de energia elétrica do SEP, a continuidade do fornecimento é um indicador de qualidade e a sua descontinuidade é medida em minutos por mês (DEC – totalização do tempo sem energia no período de um mês), assim como o é o número de vezes que o consumidor tem o seu suprimento descontinuado (FEC – total de vezes em que houve falta de energia). Esses parâmetros de qualidade são fatores que podem resultar em multas e penalidades às empresas do setor elétrico, o que associadas à continuidade do faturamento, as faz preferir os trabalhos com linhas e circuitos energizados (trabalhos sob tensão elétrica) ou o trabalho nas proximidades de partes energizadas, geralmente com condutores nus de forma a não interromper o fornecimento às unidades servidas pelo mesmo circuito elétrico.
São trabalhos identificados como em “Linha viva”, o que difere totalmente dos trabalhos nas instalações de consumo, que permitem a desenergização individualizada e não o trabalho energizado, a não ser para a identificação de circuitos e manobras.
Diferentemente do SEP, nas instalações industriais, os circuitos em reparo ou manutenção são habitualmente desenergizados para a maioria dos trabalhos dos eletricistas, mesmo porque não há possibilidade de que um equipamento funcione sem que seu suprimento seja pleno. A parada de uma ou outra máquina com sua total desenergização não implica necessariamente a parada das demais máquinas, que podem seguir operando normalmente, já que são supridas por circuitos independentes, em configuração predominantemente radial.
Nas instalações de consumo industrial, comercial e instalações prediais, em que são usados eletrodutos e caixas, com condutores isolados, se impõe como premissa básica o desligamento para os trabalhos de substituição de peças e modificações de manutenção elétrica industrial. Já nas instalações do SEP (setor elétrico), essas intervenções são praticadas sistematicamente com equipamentos energizados pelas razões já exposta.
Na próxima edição, o tema continuará a ser abordado nesta coluna.

Fonte:
Revista O Setor Elétrico – Ano 6 – Edição 71
Dezembro de 2011
====================================================================================================================================================================================================================================
Desenergização das Instalações Elétricas
PAINEL NR-10 - DESENERGIZAÇÃO DAS INSTALAÇÕES

 A desenergização é considerada uma medida de proteção coletiva prioritária pela NR-10, conforme consta no item 10.2.8.2, pois permite controlar o risco elétrico, de forma a garantir a segurança e a saúde do trabalhador. Aliás, é uma prática internacional, pois um serviço que pode ser realizado com a instalação desenergizada não deve ser feito de outra forma.
A desenergização não é o simples desligamento, mas sim a supressão da energia elétrica da instalação, Por isso, freqüentemente, o trabalho em instalações desenergizadas é chamado de "trabalho sem tensão". A própria NR-10 distingue a diferença entre a instalação desenergizada e a desligada no item 10.5.4, quando determina que os serviços executados em instalações elétricas desligadas, mas com possibilidade de energização, por qualquer meio ou razão, devem vender ao item 10.6 - ou seja, uma instalação sem possibilidade de energização por qualquer meio ou razão.
E o que é uma instalação energizada? A resposta está no item 10.6.1 da NR-10, que a define como instalação elétrica com tensão igual ou superior a 50 Volts em corrente alternada ou superior a 120 Volts em corrente continua. Deve-se observar que a tensão pode "aparecer" na instalação por diversas razões. Esse conceito é importante e será útil na definição do aterramento temporário.
A desenergização é um procedimento estabelecido na NR-10, utilizado para garantir que a instalação não será reenergizada por qualquer meio ou razão. A instalação desenergizada apresenta nível de segurança muito superior ao da desligada, e impede principalmente a energização acidental, que pode ser causada por:
• erros na manobra;
•fechamento de chave seccionadora;
• contato acidental com outros circuitos energizados, situados ao longo do circuito;
• tensões induzidas por linhas adjacentes ou que cruzam a rede; fontes de alimentação de terceiros (geradores);
• linhas de distribuição para operações de manutenção e instalação e colocação de transformadores;
• torres e cabos de transmissão nas operações de construção de linhas de transmissão;
• linhas de transmissão nas operações de substituição de torres; ou
• manutenção de componentes da linha


O procedimento adotado oficialmente no Brasil, através do item 10.5.1 da NR-10, estabelece que somente sejam consideradas desenergizadas as instalações elétricas liberadas para trabalho, mediante procedimentos apropriados, de acordo com a seguinte seqüência:
• seccionamento;
• impedimento de reenergização;
• constatação da ausência de tensão;
• instalação de aterramento temporário com equipotencialização dos condutores dos circuitos;
• proteção dos elementos energizados existentes na zona controlada (Anexo I); e
• instalação da sinalização de impedimento de reenergização.
Com isso, a NR-10 define todos os passos que devem ser adotados para que uma instalação seja considerada desenergizada. Além disso, reconhece no item 10.5.3 que podem existir razões, em função das peculiaridades de cada situação, para que as medidas constantes nas alíneas apresentadas sejam alteradas, substituídas, ampliadas ou eliminadas.
Neste caso devem ser desenvolvidos procedimentos específicos que garantam a manutenção do mesmo nível de segurança originalmente preconizado - sem isto as alterações não poderão ser feitas.
Esse procedimento devem ser previamente elaborado e assinado por profissional legalmente habilitado e autorizado. Não é admitida a alteração, substituição, ampliação ou eliminação de qualquer medida durante a execução dos trabalhos.
O procedimento de desenergização, definido no item 10.5.1 pela NR-10, é genérico e visa evitar a reenergização. Para que a desenergização possa ser realizada de maneira eficaz pelos trabalhadores responsáveis por esta tarefa, devem ser elaborados procedimentos específicos para cada tipo de instalação, em atendimento ao item 10.11.1 da mesma norma. Esse procedimento tem de descrever claramente como o trabalhador responsável pela desenergização deve realizar a tarefa, assim como as medidas de controle (EPIs e EPCs) a serem usadas em cada passo.
Os profissionais que executam a tarefa de desenergizar a instalação devem ser autorizados a trabalhar com instalações elétricas energizadas, de acordo com o capitulo 10.8 da NR-10. Um aspecto muito importante a ser recordado é que, durante o procedimento de desenergização, a instalação está desligada. enquanto não forem executadas todas as etapas do procedimento, a instalação não é considerada desenergizada.


O estado de instalação desenergizada deve ser mantido durante a execução das atividades. Para a reenergização, a NR-10 estabelece passos a serem seguidos (o inverso do procedimento de desenergização) no item 10.5.2 a saber:
• retirada das ferramentas, utensílios e equipamentos;
• retirada da zona controlada de todos os trabalhadores não envolvidos no processo de desenergização;
• remoção do aterramento temporário, da equipotencialização e das proteções adicionais;
• remoção da sinalização de impedimento de reenergização; e
• destravamento, se houver, e religação dos dispositivos de seccionamento.
Em função da importância da desenergização de uma instalação na garantia da segurança e saúde dos trabalhadores que intervêm em instalações elétricas, deve-se considerar a hipótese de maior formalidade nesse procedimento. Além dos passos seguidos, pode ser utilizada uma etiqueta com check-list e a identificação dos trabalhadores responsáveis pela desenergização.
A desenergização é a medida de controle prioritária, de acordo com a NR-10, para garantir a segurança e a saúde dos trabalhadores. Portanto, para que seja aplicado de maneira eficaz, cada passo deve ser realizado de maneira adequada. A forma mais fácil e segura é seguir os requisitos das normas técnicas, pois não é prudente realizá-la de forma intuitiva. Nas próximas edições serão abordados os passos do procedimento de desenergização e principalmente as recomendações estabelecidas nas normas técnicas para garantir a segurança e a saúde dos trabalhadores.
====================================================================================================================================================================================================================================================================================

Introdução

A energia elétrica é um pouco como o ar que respiramos - você não pensa sobre ela até ficar sem. A energia apenas está "lá", satisfazendo cada uma de suas necessidades constantemente. Você a usa para aquecimento,esfriamento, cozimento, refrigeração, iluminação, som, computador,entretenimento... Sem ela, a vida pode ficar meio desconfortável.
A energia viaja desde a usina elétrica até sua casa por um sistema incrível chamado, rede de distribuição de energia.
http://static.hsw.com.br/gif/power-transmission.jpg
A rede elétrica é pública - se você vive em um subúrbio ou em uma zona rural, pode ser que ela esteja ao ar livre, para todos verem. Ela está tão a vista que você provavelmente nem a percebe mais. Seu cérebroprovavelmente ignora todos os cabos de eletricidade porque são vistos com freqüência. Neste artigo, vamos ver todo o equipamento que traz a energia elétrica até sua casa. Da próxima vez que você olhar para uma rede elétrica, você vai realmente vê-la e entender o que está acontecendo.
Como funcionam as redes elétricas
por Marshall Brain - traduzido por HowStuffWorks Brasil

Neste artigo
1. 

2. 
A usina elétrica

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

A usina elétrica

A energia elétrica é gerada na usina elétrica. Em quase todos os casos, a usina elétrica consiste de um gerador elétrico rotativo. Algo tem que acionar esse gerador - pode ser uma turbina hidráulica em uma represa hidrelétrica, um grande motor a diesel ou uma turbina a gás. Nos Estados Unidos, na maioria dos casos o gerador é acionado por uma turbina a vapor. O vapor pode ser obtido pela queima de carvão, óleo ou gás natural. O vapor pode vir também de um reator nuclear como este, na usina elétrica nuclear Shearon Harris, próximo a Raleigh, na Carolina do Norte:
http://static.hsw.com.br/gif/nuclear-core.jpg
Não importa o que os aciona, geradores elétricos comerciais de qualquer tamanho geram o que é chamado de energia trifásica CA. Para entender uma energia trifásica CA, é interessante entender primeiro a energia monofásica.
http://static.hsw.com.br/gif/blackout-plants.gif
Foto cedida Departamento Amerciano de Energia
Um esquema das principais fontes das usinas de energia elétrica dos Estados Unidos, por fonte

A usina elétrica: corrente alternada

Energia monofásica é o que você tem em sua casa. Você geralmente fala sobre a instalação elétrica da casa como uma instalação monofásica de 120 volts CA. Se você usar um osciloscópio e olhar a energia encontrada em uma tomada normal da parede de sua casa, verá que a energia na tomada parece uma onda senoidal, e que a onda oscila entre -170 volts e 170 volts (os picos estão na verdade em 170 volts; é a tensão eficaz (rms) que é de 120 volts). A freqüência da onda senoidal é de 60 ciclos por segundo (Hertz). Sinais elétricos com estas características são, geralmente, chamados de CA, ou corrente alternada. A alternativa para o sinal CA é o sinal CC, oucorrente contínua. As baterias produzem sinais CC: a corrente elétrica flui em uma única direção, do terminal positivo para o negativo da bateria.
O sinal CA tem pelo menos três vantagens sobre o sinal CC em uma rede de distribuição de energia:
1.    grandes geradores elétricos geram CA naturalmente; assim, a conversão para CC envolveria uma etapa extra;
2.    os transformadores devem ter correntes alternadas para operar, e veremos que a rede de distribuição de energia depende dos transformadores;
3.    é fácil converter CA em CC, mas é caro converter CC em CA; então, se você tiver de optar por uma, escolha a CA.
A usina, portanto, produz CA. Na próxima página, você vai aprender sobre a energia CA produzida na usina elétrica. Notavelmente, ela é produzida em três fases.

A usina elétrica: energia trifásica

A usina elétrica produz energia CA em três diferentes fases simultaneamente, sendo que as três possuem 120º de defasagemuma em relação à outra. Há 4 cabos saindo de cada usina elétrica: as três fases mais o neutro ou terra, comum para todas as fases. Se você olhar para as três fases em relação ao terra, em um gráfico, elas teriam a seguinte forma:
http://static.hsw.com.br/gif/power-3phase-graph.gif
Não há nada mágico sobre a energia trifásica. São simplesmente três fases sincronizadas e defasadas em 120 graus.
Por que três fases? Por que não uma, duas ou quatro? Em um sistema com uma ou duas fases, existem 120 instantes por segundo que uma onda senoidal cruza o 0 volt. Já em um sistema trifásico, em qualquer instante uma das fases está próxima do pico. Dessa forma, há um ganho com relação à potência para os motores trifásicos de alta potência (usados nas aplicações industriais) e os equipamentos de solda trifásicos, por exemplo. Quatro fases não representariam uma melhora significativa neste cenário, mas acrescentariam um quarto cabo; então, a opção natural é o sistema trifásico.
E o que falar sobre esse "terra", mencionado acima? A empresa de energia usa essencialmente a terra como um dos cabos no sistema de potência. A terra é um ótimo condutor e é enorme; então, ela representa um bom caminho de retorno para os elétrons. Os fabricantes de carros fazem algo similar. Eles usam o chassi de metal do carro como um dos cabos no sistema elétrico do veículo e conectam o pólo negativo da bateria ao chassi. "Terra" na rede de distribuição é literalmente "o planeta Terra", que é tudo em seu redor quando você caminha lá fora. É o cascalho, as pedras, a água do subsolo, etc.

Subestação de transmissão

A energia trifásica (sinais de tensão e corrente CA) sai do gerador e segue para a subestação de transmissão na usina elétrica. Essa subestação utiliza grandes transformadores para elevar a tensão do gerador (que está em um nível de milhares de volts) até tensões extremamente altas, para a transmissão de longa distância através da rede de transmissão. 
http://static.hsw.com.br/gif/power-pp-ss.jpg
Uma típica subestação em uma usina elétrica
Você pode ver, ao fundo, várias torres com três cabos saindo da subestação. As tensões típicas para a transmissão de longa distância variam de 155 mil a 765 mil volts. Esse nível de tensão visa reduzir as perdas nas linhas. A distância máxima de uma transmissão típica é de aproximadamente 483 km. As linhas de transmissão de alta tensão são inconfundíveis quando você as vê. Normalmente, elas são constituídas de enormes torres de aço como esta:
http://static.hsw.com.br/gif/power-transmission.jpg
Todas as torres da figura possuem três cabos, sendo um para cada fase. Muitas torres, como as mostradas acima, possuem cabos extras correndo ao longo de seu topo. Estes são cabos aterrados (denominados pára-raios ou cabo-guarda) e eles estão lá principalmente em uma tentativa de atrair raios.

A rede de distribuição

Para a energia ser útil em uma casa ou comércio, ela vem da rede de transmissão e é reduzida para a rede de distribuição. Isso pode acontecer em várias etapas. O local onde ocorre a redução da "transmissão" para a "distribuição" é a subestação de distribuição. Uma subestação de distribuição geralmente faz duas ou três coisas:
·         ela tem transformadores que reduzem a tensão de transmissão (de uma faixa de dezenas ou centenas de milhares de volts) para a tensão de distribuição (geralmente de menos de 10 mil volts);
·         ela tem um "barramento" que pode direcionar a energia para várias cargas;
·         geralmente há disjuntores e chaves, visando desconectar a subestação da rede de transmissão ou desligar linhas que saem da subestação de distribuição quando necessário.
http://static.hsw.com.br/gif/power-ss-overview-back.jpg
Uma típica subestação de pequeno porte
O equipamento (caixa cinza) em primeiro plano é um grande transformador. À esquerda (e fora do quadro, mas visível na próxima foto) está a linha de energia que chega da rede de transmissão e um conjunto de chaves associado a essa linha. À direita está um barramento de distribuição e mais três reguladores de tensão.
http://static.hsw.com.br/gif/power-ss-in.jpg
As linhas de transmissão entrando na subestação e passando pelas chaves na torre

http://static.hsw.com.br/gif/power-ss-transformer.jpg
As chaves na torre e o transformador principal
Agora o barramento de distribuição aparece na foto.

Barramento de distribuição

A energia segue do transformador para o barramento de distribuição:
http://static.hsw.com.br/gif/power-ss-bus.jpg
Nesse caso, o barramento distribui a energia para dois conjuntos separados de linhas de distribuição em duas tensões diferentes. Os transformadores menores conectados aos barramentos estão reduzindo a tensão para o valor padrão (geralmente 7.200 volts) para um conjunto de linhas, ao passo que a parte da energia segue na outra direção, na tensão maior do transformador principal. A energia deixa essa subestação em dois conjuntos de três cabos, cada um em uma direção diferente:
http://static.hsw.com.br/gif/power-ss-out.jpg
Os cabos entre esses dois postes são os "cabos dos cabos" para suporte. Eles não transportam corrente.
http://static.hsw.com.br/gif/power-3-phase.jpg
Da próxima vez que você estiver viajando por uma estrada, pode olhar os cabos de energia de um modo completamente diferente. Na figura à direita, uma cena típica: os três cabos no alto dos postes são os três cabos para a energia trifásica. O quarto cabo mais abaixo é o fio terra. Em alguns casos haverá cabos extras, comumente fios de telefone ou TV a caboque utilizam os mesmos postes.
Como já mencionado, essa subestação em particular produz dois níveis de tensão. A tensão mais alta precisa ser reduzida novamente, o que geralmente acontecerá em outra subestação ou em transformadores menores em algum lugar da linha. Por exemplo, você freqüentemente vê uma grande caixa verde (talvez de 1,8 m de um lado) próximo a um conjunto de cargas. Ela está realizando a função de redução da tensão para estas cargas.

Banco regulador

Você também vai encontrar os bancos de reguladores localizados ao longo da linha, tanto subterrânea como aérea. Eles regulam a tensão da linha para evitar condições de subtensão e sobretensão.
http://static.hsw.com.br/gif/power-mini-sub.jpg
Um típico banco regulador
Lá em cima, na parte superior desta foto, estão três chaves que permitem que esse banco de reguladores seja desconectado para manutenção quando necessário:
http://static.hsw.com.br/gif/power-mini-ss-switch1.jpg
Nesse ponto, temos uma linha típica com tensão em torno de 7.200 volts, passando pelo bairro em três cabos (com um quarto cabo-terra, na parte de baixo do poste):
http://static.hsw.com.br/gif/power-3distrib2.jpg

Terminais

Uma casa precisa de apenas uma das três fases; então, é comum você ver três cabos pela estrada, e terminais para uma ou duas das fases escoarem pelas ruas laterais. Na foto abaixo, é ilustrado um terminal trifásico para um bifásico, com duas fases sendo derivadas para a direita:
http://static.hsw.com.br/gif/power-3to2.jpg
Aqui está um terminal bifásico para um monofásico, com somente uma fase correndo pela direita:
http://static.hsw.com.br/gif/power-2to1.jpg

Em casa

E, finalmente, estamos no cabo que leva a energia até sua casa! Fora de uma casa comum existe um conjunto de postes com um condutor fase (de7.200 volts) e um fio condutor terra (embora às vezes haja duas ou três fases no poste, dependendo de onde a casa está localizada na rede de distribuição). Em cada casa, há um transformador conectado ao poste, assim:
http://static.hsw.com.br/gif/power-house.jpg
Em muitos bairros, as linhas de distribuição são subterrâneas e há caixas verdes de transformadores em cada uma ou duas casas. Aqui estão alguns detalhes dos elementos presentes no poste:
http://static.hsw.com.br/gif/power-parts.gif
O trabalho do transformador é reduzir os 7.200 volts para os 240 voltsusados nas instalações elétricas residenciais normais. Vamos dar uma olhada no poste mais uma vez, desde a parte de baixo, para ver o que está acontecendo:
http://static.hsw.com.br/gif/power-ground.jpg
Há duas coisas para se notar nesta foto:
·         um cabo exposto descendo pelo poste: o fio terra. Todo poste no planeta tem um. Se você vir uma empresa de energia instalar um novo poste, perceberá que a extremidade do cabo exposto está conectada a uma haste na base do poste e, por isso, está em contato direto com a terra, percorrendo de 1,8 a 3 m no subsolo. Esta é uma conexão boa e sólida com a terra. Se você examinar um poste com cuidado, verá que o fio terra que corre entre os postes está conectado a essa ligação direta com o solo;
·         dois cabos saindo do transformador e três cabos entrando na casa. Os dois cabos do transformador são isolados e o terceiro é exposto. O cabo exposto é o fio terra. Os dois cabos isolados possuem cada um 120 volts, mas estão 180 graus defasados; então, a diferença entre eles é de 240 volts. Essa configuração permite que o proprietário da casa use tanto os aparelhos de 120 volts como os de 240 volts. O transformador é enrolado neste tipo de configuração:
http://static.hsw.com.br/gif/power-transformer-wiring.gif
Os 240 volts entram em sua casa através de um típico wattímetro como este:
http://static.hsw.com.br/gif/power-meter.jpg
O medidor permite que a empresa de energia cobre você.


Dispositivos de segurança: fusíveis

Fusíveis e disjuntores são dispositivos de segurança. Vamos dizer que você não tenha fusíveis ou disjuntores em casa e algo de errado aconteça. O que poderia acontecer de errado? Veja alguns exemplos:
·         um motor de ventilador queimar um rolamento, travar, superaquecer e derreter, causando uma conexão direta entre um fio fase e a terra;
·         um cabo vem solto em uma lâmpada e conecta diretamente um fio fase e a terra;
·         um rato morde o isolamento em um cabo e conecta diretamente o fio fase e a terra;
·         alguém passa com o aspirador de pó por cima do fio do abajur, cortando-o e conectando diretamente o fio fase à terra;
·         uma pessoa pendura um quadro na sala de estar e o prego atinge um fio fase na parede, conectando diretamente o fio fase à terra.
http://static.hsw.com.br/gif/power-fuse.jpg
Quando um fio fase de 120 volts se conecta diretamente à terra, seu efeito é enviar tanta eletricidade quanto possível através da conexão. O dispositivo ou o cabo na parede explodiriam em uma situação dessas (o cabo na parede ficaria quente como a resistência de um forno elétrico). Um fusível é um dispositivo simples projetado para superaquecer e queimar extremamente rápido em uma situação dessa. Em um fusível, uma pedaço fino de fio vaporiza rapidamente quando uma corrente elevada passa por ele. Isso interrompe a corrente no cabo imediatamente, protegendo-o do superaquecimento. Os fusíveis devem ser substituídos cada vez que queimarem. Um disjuntor usa o calor de uma sobrecarga para acionar um mecanismo e abrir como uma chave, por isso os disjuntores podem ser religados.
A energia, então, entra na casa através de um típico quadro de disjuntores como este de cima.

Dispositivos de segurança: disjuntores

http://static.hsw.com.br/gif/power-fuse.jpg
Dentro do quadro de disjuntores (à direita) você pode ver os dois fios principais do transformador entrando na parte superior do disjuntor geral. O disjuntor geral permite que você interrompa a energia do quadro inteiro quando necessário. Dentro desse arranjo, todos os cabos seguem para as diversas tomadas e luzes da casa, através de um disjuntor ou fusível:
http://static.hsw.com.br/gif/power-fuse-open.jpg
Se o disjuntor estiver acionado, a energia fluirá através dos fios na parede e eventualmente fará seu caminho até o destino final: a tomada.
http://static.hsw.com.br/gif/power-outlet.jpg
Que história incrível! É necessário todo esse equipamento para que a energia da usina elétrica chegue até seu quarto.
http://static.hsw.com.br/gif/power-transmission.jpg
Da próxima vez que você viajar por uma estrada e olhar para as linhas de energia, ou da próxima vez que acender a luz, vai entender muito melhor o que está acontecendo. A rede de distribuição de energia é, na verdade, um sistema incrível.



Como funcionam as pilhas e baterias
por Marshall Brain - traduzido por HowStuffWorks Brasil

Neste artigo
1. 
Introdução

2. 

3. 

4. 

Introdução

http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/bt-quiz_r1_c1.jpg
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/spacer.gif
http://static.hsw.com.br/gif/bt-quiz_r3_c1.jpg
http://static.hsw.com.br/gif/spacer.gif
As baterias estão em todos os lugares,  carros, computadores, laptops , MP3 players etelefones celulares. Uma bateria é essencialmente uma lata cheia de químicos que produz elétrons. As reações químicas que produzem elétrons são chamadas de reações eletroquímicas. Neste artigo, aprenderemos tudo sobre baterias, desde o conceito básico de funcionamento, a verdadeira química que acontece dentro delas e o que o futuro reserva para as baterias e as possíveis fontes de energia que poderiam substituí-las.
bateria
Se você examinar qualquer bateria, notará que ela tem 2 terminais. Um terminal está marcado (+), ou positivo, enquanto o outro terminal está marcado (-), ou negativo. Em uma bateria tipo AA, C ou D (baterias normais de lanternas), as pontas das baterias são os terminais. Em uma bateria grande de carro, existem 2 terminais de chumbo.
http://static.hsw.com.br/gif/battery.gif
Elétrons se agrupam no terminal negativo da bateria. Se você conectar um fio entre os terminais positivo e negativo, os elétrons fluirão do terminal negativo para o terminal positivo o mais rápido que eles puderem (descarregar a bateria muito rápido pode ser perigoso, especialmente com baterias grandes, então não o faça). Normalmente, você conecta algum tipo de carga para a bateria usando um fio. Esta carga pode ser algo como umalâmpada, um motor ou um circuito eletrônico, como um rádio.
Dentro da bateria, uma reação química produz os elétrons. A velocidade da produção de elétrons por esta reação química (a resistência interna da bateria), controla quantos elétrons podem fluir entre os terminais. Os elétrons fluem da bateria para dentro do fio e passam do terminal negativo para o terminal positivo para que a reação química aconteça. Esta é a razão pela qual a bateria pode ficar em uma prateleira por um ano e ainda estar cheia de energia. Uma vez conectado o fio, a reação começa.

A primeira bateria foi criada por Alessandro Volta em 1800. Para criar essa bateria, ele fez uma pilha de camadas alternadas de zinco, papel mata-borrão ensopado em água salgada e prata, desse jeito:
http://static.hsw.com.br/gif/battery-pile.gif
Este arranjo ficou conhecido como uma pilha voltaica. As camadas de cima e de baixo da pilha precisam ser de metais diferentes, como mostrado. Se você conectar um fio em cima e um embaixo da pilha, poderá medir a voltagem e a corrente geradas. A pilha pode ser sobreposta quantas vezes for preciso para obter a voltagem desejada.

No século 19, antes da invenção do gerador elétrico (o gerador não foi inventado e aperfeiçoado até 1870), a Célula de Daniell, que é conhecida por outros 3 nomes: "célula de Crowfoot" por causa do formato típico do zinco, "célula de gravidade" por que a gravidade mantém os 2 sulfatos separados e "célula molhada", oposta à "célula seca" moderna, porque usa líquidos para os eletrólitos, era extremamente comum para o funcionamento dos telegráfos e das campainhas das portas. A célula de Daniell consiste de placas de cobre e zinco e sulfatos de cobre e zinco.
http://static.hsw.com.br/gif/battery-dan.gif
Para fazer a célula de Daniell, a placa de cobre é colocada no fundo de uma jarra de vidro. A solução de sulfato de cobre é colocada sobre a placa até a metade da jarra. Uma placa de zinco é então pendurada na jarra - como mostrado - e uma solução de sulfato de zinco é colocada cuidadosamente na jarra. O sulfato de cobre é mais denso que o sulfato de zinco, então o sulfato de zinco "flutua" sobre o sulfato de cobre. Obviamente, este arranjo não funciona bem em uma lanterna, mas funciona bem para aplicações fixas. Se você tiver acesso a sulfato de zinco e sulfato de cobre, pode tentar fazer a sua própria célula de Daniell.

Experiências
Se você quiser aprender sobre as reações eletroquímicas usadas para criar baterias, é fácil fazer experiências em casa para tentar combinações diferentes. Para fazer estes experimentos corretamente, precisa comprar umvoltímetro (US$ 10 a US$ 20) em uma loja de material eletrônico ou de construção. Esteja certo de que o voltímetro pode ler baixas voltagens (cerca de 1 volt) e baixas correntes (cerca de 5 a 10 miliampêres). Desta maneira, você será capaz de ver exatamente o que a sua bateria está fazendo.
Você pode criar a sua própria pilha voltaica usando moedas e papel toalha. Misture sal com água (a maior quantidade de sal que a água suportar) e ensope o papel toalha nesta salmoura. Faça então uma pilha alternando moedas de cobre e de níquel. Veja que tipo de voltagem e corrente esta pilha produz. Tente um número de camadas diferentes e veja qual o efeito que isto tem na voltagem. Depois, tente alternar moedas de cobre e de prata e veja o que acontece. Tente também moedas de prata e de níquel. Outros metais que você pode tentar incluem o papel alumínio e oaço. Cada combinação metálica deverá produzir uma pequena diferença na voltagem.
http://static.hsw.com.br/gif/battery-pile.gif
Um outro experimento simples que você pode tentar envolve um pote, ácido diluído, fio e pregos. Encha o pote com suco de limão ou vinagre (ácidos diluídos) e coloque um prego e um pedaço de fio de cobre dentro dele sem que um encoste no outro. Tente pregos revestidos de zinco (galvanizados) e pregos de ferro comuns. Meça a voltagem e a corrente conectando o seu voltímetro aos pedaços de metal. Substitua o suco de limão por água salgada e tente também com moedas e metais diferentes para ver o efeito na voltagem e na corrente.
Provavelmente a bateria mais simples que você pode criar é chamada debateria zinco-carbono. Entendendo a reação química que acontece dentro da bateria, você pode entender como as baterias funcionam.
Imagine que você tenha um pote de ácido sulfúrico (H2SO4). Enfie uma varinha de zinco dentro do pote e o ácido imediatamente começa a corroer o zinco. Você verá as bolhas de gás hidrogênio formando-se no zinco e a varinha e o ácido começarão a esquentar. O que está acontecendo é:
·         as moléculas de ácido estão se quebrando em 3 íons: 2 H+ íons e 1 SO4- íon.

·         os átomos de zinco na superfície da varinha de zinco perdem 2 elétrons (2e-) para se tornar Zn++ íons.

·         o Zn++ íons combinados com o SO4-- íon para criar ZnSO4, o qual dissolve o ácido.

·         os elétrons dos átomos de zinco combinam com os íons de hidrogênio no ácido para criar moléculas de H2 (gás de hidrogênio). Nós vemos o gás de hidrogênio como as bolhas se formando na varinha de zinco.
Nada acontece com uma varinha de carbono quando colocada no ácido. Mas se você conectar um fio entre a varinha de zinco e a varinha de carbono, 2 coisas mudarão:
·         os elétrons fluirão através do fio e se combinarão com o hidrogênio na varinha de carbono, então o gás de hidrogênio começa a borbulhar na varinha de carbono;

·         existe menos calor. Você pode fornecer energia para umalâmpada ou carga similar, usando os elétrons que fluem através do fio e pode medir a voltagem e a corrente no fio. Alguma energia do calor é transformada em movimento de elétrons.
Os elétrons movem-se para a varinha de carbono porque a combinação com o hidrogênio é mais fácil. Existe uma voltagem característica na célula de 0,76 volts. Eventualmente, a varinha de zinco se dissolverá completamente ou os íons de hidrogênio no ácido se desgastam e a bateria "morre".

·        
Ciência
·         Crianças
·         Eletrônicos
·         Empresas e Finanças pessoais
·         Entretenimento
·         Esporte
·         Informática
·         Saúde
·         Sociedade e Cultura
·         Sua casa
·         Viagem
http://static.hsw.com.br/pt-br/www/misc/bt-menu-shopping.jpg
·         Dicas sobre produtos
·          
http://static.hsw.com.br/pt-br/www/icons/img-videos2.gif 
QUIZ
·          
http://static.hsw.com.br/gif/quiz-icon-ch.gif
BLOG
·         Ano Polar
·         Eurocopa
·         Gadgets
·         Verão abaixo de zero
BOLETIM POR E-MAIL
·          


Publicidade
http://d1.openx.org/lg.php?bannerid=671368&campaignid=313453&zoneid=232110&source=ch=casa&sc=home-appliances&loc=1&referer=http%3A%2F%2Fcasa.hsw.uol.com.br%2Fbaterias1.htm&cb=7ff20f6d9c&r_id=b1514630b70067f8da80c9ef999d910e&r_ts=m1salj
Como funcionam as pilhas e baterias
por Marshall Brain - traduzido por HowStuffWorks Brasil

Neste artigo
1. 

2. 
A energia da bateria e seus usos

3. 

4. 

A energia da bateria e seus usos

Em qualquer bateria, o mesmo tipo de reação eletroquímica acontece para que os elétrons movam-se de um pólo a outro. Na verdade, metais e eletrólitos são usados para controlar a voltagem da bateria; cada reação diferente tem uma voltagem característica. Isto é, por exemplo, o que acontece em uma célula de uma bateria chumbo-ácido de carro:
·         a célula tem uma placa feita de chumbo e uma outra feita de dióxido de chumbo que estão mergulhadas em uma solução aquosa de ácido sulfúrico (eletrólito);
·         o chumbo combina com o SO4 (íons de sulfato) para criar PbSO4 (sulfato de chumbo) mais um elétron;
·         o dióxido de chumbo, os íons de hidrogênio e os íons de SO4 mais os elétrons da placa de chumbo criam PbSO4 e água na placa de dióxido de chumbo;
·         quando a bateria descarrega, as 2 placas formam PbSO4 (sulfato de chumbo) e água se forma no ácido. A voltagem característica é de cerca de 2 volts por célula, então, se você combina 6 células, você obtém uma bateria de 12 volts;
Uma boa característica que tem a bateria chumbo-ácido é que a reação química é completamente reversível. Se você aplicar corrente à bateria em uma voltagem correta, o chumbo e o dióxido de chumbo se formam de novo nas placas e então é possível usar a bateria novamente por várias vezes. Em uma bateria de zinco-carbono, não existe uma maneira fácil de reverter a reação, pois não se obtém facilmente o gás de hidrogênio de volta para o eletrólito.
As baterias modernas usam uma variedade de reações químicas para fornecer energia. Os produtos químicos típicos de uma bateria incluem:
·         bateria de zinco-carbono - também conhecida como bateriastandard de carbono, a química do zinco-carbono é usada em todas as baterias baratas do tipo AA, C e D. Os eletrodos são o zinco e o carbono com uma pasta ácida entre eles para servir de eletrólito;
·         baterias alcalinas - usadas pelas baterias comuns da Duracell e da Energizer, os eletrodos são o zinco e o óxido de manganês com um eletrólito alcalino;
·         baterias de lítio - lítio, iodeto de lítio e iodeto de chumbo são usados em câmaras digitais por causa da sua capacidade de fornecer aumento de energia;
·         baterias de chumbo-ácido - usadas em automóveis, os eletrodos são feitos de chumbo e óxido de chumbo com um eletrólito de ácido forte (recarregável);
·         baterias de níquel-cádmio - os eletrodos são o hidróxido de níquel e o cádmio com um eletrólito de hidróxido de potássio (recarregável);
·         baterias de níquel-metal hidreto - esta bateria está rapidamente substituindo a bateria de níquel-cádmio, pois ela não sofre doefeito memória (em inglês) que acontece nas baterias de níquel-cádmio (recarregáveis);
·         bateria de lítio-íon - com uma relação muito boa de peso-potência, ela é geralmente encontrada em computadores laptop etelefones celulares de ponta (recarregável);
·         bateria de zinco-ar - esta bateria é leve e recarregável;
·         bateria de zinco-óxido de mercúrio - geralmente usada em aparelhos auditivos;
·         bateria de prata-zinco - usada em aplicações aeronáuticas por sua boa relação peso-energia;
·         bateria de metal-cloreto - usada em veículos elétricos.
Em quase todos os aparelhos que usam baterias, não se usa somente uma célula por vez. Você geralmente as agrupa de forma serial para formar voltagens mais altas ou em paralelo para formar correntes mais altas. Em umarranjo serial, as voltagens se somam. Em um arranjo paralelo, as correntes se somam. O diagrama a seguir mostra estes 2 arranjos:
http://static.hsw.com.br/gif/battery-packs.gif
O arranjo de cima é chamado de arranjo paralelo. Supondo que cada célula produz 1,5 volts, então 4 baterias em paralelo também produzirão 1,5 volts, mas a corrente fornecida será 4 vezes maior do que a de uma única célula. O arranjo abaixo é chamado de arranjo serial. As 4 voltagens se somam para produzir 6 volts.
Normalmente, quando você compra um pacote de baterias, o pacote lhe diz a voltagem e a corrente da bateria. A minha câmera digital, por exemplo, usa 4 baterias de níquel-cádmio que estão classificadas em 1,25 volts e 500 miliampéres/hora para cada célula. Você pode dividir os miliampéres em muitas maneiras diferentes. Uma bateria de 500 miliampéres-hora poderia produzir 5 miliampéres por 100 horas, ou 10 miliampéres por 50 horas, ou 25 miliampéres por 20 horas, ou - teoricamente - 500 miliampéres por 1 hora, ou até mesmo mil miliampéres por 30 minutos.
Entretanto, as baterias não são tão lineares assim. Em primeiro lugar, todas as baterias têm uma corrente máxima que elas podem produzir. Uma bateria de 500 miliampéres-hora não pode produzir 30 mil miliampères por 1 segundo porque não existe uma maneira para que as reações químicas aconteçam tão rapidamente e a níveis tão altos de corrente. Uma bateria pode produzir muito calor, desperdiçando um pouco da sua energia. Muitos químicos nas baterias têm expectativa de vida mais curta ou mais longa em níveis muito baixos de corrente, mas as classificações de miliampères-hora são normalmente lineares. Usando a medida ampéres-hora, é possível estimar por quanto tempo a bateria vai durar sob uma certa carga.
Colocando 4 baterias de 1,25 volts e 500 miliampéres-hora em um arranjo serial, obtên-se 5 volts (1,25 X 4) a 500 miliampéres-hora. Estas mesmas baterias em paralelo, fornecerão 1,25 volts a 2 mil (500 X 4) miliampéres-hora.
Alguma vez você já olhou dentro de uma bateria de 9 volts comum?
http://static.hsw.com.br/gif/battery-9v1.jpg
http://static.hsw.com.br/gif/battery-9v2.jpg
Os fabricantes aconselham a não desmontar uma bateria para não causar danos a sua saúde
Ela contém 6 baterias muito pequenas que produzem 1,5 volts cada em umarranjo serial!
Para mais informações sobre as baterias e tópicos relacionados, acesse os links da próxima página.
=========================================================================================================================================================================================================================================================================================

Neste artigo
1. 
Introdução

2. 

3. 

4. 

Introdução

A eletricidade nos cerca por todos os lados. Para a maioria das pessoas, a vida moderna seria praticamente impossível sem ela. Veja aqui alguns exemplos:
·         Em todas as partes da casa, você provavelmente encontra tomadas onde pode ligar todo tipo de eletrodomésticos.
·         A maioria dos aparelhos portáteis precisa de baterias, que produzem uma quantidade variável de eletricidade, dependendo de seu tamanho.
·         Durante uma tempestade, gigantescos "deslocamentos" de eletricidade, normalmente chamados de relâmpagos, são disparados do céu.
·         Em uma escala muito menor, você pode levar choques deeletricidade estática em dias secos de inverno.
·         É fácil criar eletricidade com a luz do sol usando uma célula solar ou até mesmo criá-la a partir da energia química do hidrogênio e oxigênio usando uma célula de combustível.
Mas o que é a eletricidade? De onde ela vem e por que pode fazer tantas coisas diferentes?
A eletricidade que obtemos nas tomadas e baterias pode fornecer energia para diferentes tipos de aparelhos.
·         Motores elétricos transformam a eletricidade em movimento.
·         Lâmpadas, lâmpadas fluorescentes e LEDs (diodos emissores de luz) transformam a eletricidade em luz.
·         Computadores transformam eletricidade em informação.
·         Telefones transformam eletricidade em comunicação.
·         TVs transformam eletricidade em imagens.
·         Alto-falantes transformam eletricidade em ondas sonoras.
·         Armas de choque transformam eletricidade em dor.
·         Torradeiras, secadores de cabelos e aquecedores transformam eletricidade em calor.
·         Rádios transformam eletricidade em ondas eletromagnéticas que podem viajar milhões de quilômetros.
·         Aparelhos de raio-X transformam eletricidade em raios X.
É difícil imaginar pessoas no mundo moderno vivendo sem eletricidade. Na falta de eletricidade, voltamos a usar lareiras para obter calor, fogões a lenha para cozinhar, velas para iluminar, réguas de cálculo para fazer contas mais complicadas e para falar a longa-distância só nos restam cartas e cartões postais.
A eletricidade começa com elétrons. Se você leu Como funcionam os átomos, sabe que cada átomo contém um ou mais elétrons. Sabe também que os elétrons têm uma carga negativa.
http://static.hsw.com.br/gif/laser1.jpg
Um átomo em seu modelo mais simples
Em muitos materiais, os elétrons são fortemente ligados aos átomos: madeira, vidro, plástico, cerâmica, ar, algodão, todos são exemplos disso. Como os elétrons não se movem, esses materiais quase não conduzem eletricidade. São o que chamamos de isolantes elétricos.
Por outro lado, a maioria dos metais têm elétrons que podem se separar de seus átomos e se mover. Estes são chamados elétrons livres. Ouro, prata, cobre, alumínio e ferro, entre outros, contêm elétrons livres. Eles ajudam a eletricidade a fluir por esses materiais, que são conhecidos comocondutores elétricos, por conduzirem eletricidade. Os elétrons em movimento transmitem energia elétrica de um ponto a outro.
Geradores
A eletricidade precisa de um condutor para se mover. Assim como é necessário algo para fazê-la fluir através do condutor. Uma maneira de fazer com que a eletricidade seja conduzida é usar um gerador. Os geradores usam um ímã para fazer os elétrons se moverem.
Há uma conexão explícita entre eletricidade e magnetismo. Se você deixar os elétrons se moverem por um fio, eles criam um campo magnético ao redor dele (veja Como funcionam os motores elétricos e Como funcionam os eletroímãs para mais detalhes). De maneira similar, se você mover um ímã perto de um fio, o campo magnético fará com que seus elétrons se movam.
http://static.hsw.com.br/gif/motor.gif
Um gerador é um aparelho simples que move um ímã perto de um fio para criar um fluxo estável de elétrons.
Uma maneira simples de pensar em um gerador é imaginá-lo atuando como uma bomba d'água. Ao invés de água, o gerador usa o ímã para produzir elétrons. Isso é uma simplificação exagerada, mas uma analogia útil.
Há duas coisas que uma bomba d'água pode fazer com a água:
1.    Mover um certo número de moléculas de água.
2.    Aplicar uma certa pressão sobre as moléculas de água.
Da mesma maneira, o ímã em um gerador pode:
1.    Deslocar um certo número de elétrons.
2.    Aplicar uma certa "pressão" sobre os elétrons.
Em um circuito elétrico, o número de elétrons em movimento é chamadoamperagem ou corrente, que é medida em ampères. A "pressão" sobre os elétrons é chamada voltagem e é medida em volts. Por isso, você pode ouvir alguém dizer: "se você girar o gerador a 1.000 rpm, pode produzir 1 ampère em uma tensão de 6 volts". Um ampere é o número de elétrons em movimento (fisicamente, 1 ampère significa que 6,24 x 1018 elétrons se movem por um fio a cada segundo). A voltagem, por sua vez, é a quantidade de pressão sobre esses elétrons.
Circuitos elétricos
Independentemente de estar usando uma bateria, uma célula de combustível ou uma célula solar para produzir eletricidade, há três coisas que permanecem as mesmas:
http://static.hsw.com.br/gif/battery.gif
·         A fonte de eletricidade terá dois terminais: um positivo e um negativo.
·         A fonte de eletricidade (mesmo sendo um gerador, bateria, etc.) vai tentar deslocar elétrons para fora de seu terminal negativo com uma certa voltagem. Por exemplo, uma pilha AA desloca elétrons a 1,5 volts.
·         Os elétrons precisam fluir do terminal negativo para o terminal positivo através de um fio de cobre ou outro condutor. Quando há um caminho que vai do terminal negativo para o positivo, há umcircuito e elétrons podem correr pelo fio.
·         Você pode conectar um dispositivo de qualquer tipo (umalâmpada, um motor, uma TV, etc.) no meio do circuito. A fonte de eletricidade vai fornecer energia para o dispositivo e este, por sua vez, irá fazer seu trabalho (criar luz, girar um eixo, gerar imagens, etc.).
Circuitos elétricos podem ser bastante complexos. Mas você sempre terá uma fonte de eletricidade (uma bateria, etc.), um dispositivo (lâmpada, motor, etc.), e dois fios para carregar eletricidade entre a bateria e o dispositivo. Os elétrons se movem da fonte para o dispositivo, e novamente de volta à fonte.
Os elétrons em movimento possuem energia. E, movendo-se de um ponto a outro, podem fazer muitos trabalhos. Em uma lâmpada incandescente, por exemplo, a energia dos elétrons é usada para gerar calor e o calor cria luz. Em um motor elétrico, a energia nos elétrons cria um campo magnético e este campo pode interagir com outros ímãs (por atração e repulsão magnéticas) para criar movimento. Cada aparelho elétrico usa a energia dos elétrons de alguma maneira para criar um efeito colateral útil.
E os relâmpagos?
http://static.hsw.com.br/gif/lightning-nasa.jpg
Imagem cedida pela NASA
Se o ar é um isolante, então como um relâmpago pode sair de uma nuvem para o solo através de um material não-condutor? No caso dos relâmpagos, há tanta energia elétrica armazenada entre a nuvem e o solo que, em algum momento, a energia consegue destacar elétrons dos átomos no ar. Assim que esse processo começa, o ar se torna um plasma (um estado separado de matéria onde há muitos elétrons livres criados por calor ou alta voltagem - vejaComo funciona o cortador de plasma para saber mais sobre esse estado). Assim que se transforma em plasma, o ar pode facilmente conduzir eletricidade com os elétrons livres e o relâmpago acontece através dessecondutor de plasma.
Esse mesmo processo permite que uma faísca passe pelos condutores de uma vela de ignição ou de um arma de choque e também carregue eletricidade através de um tubo fluorescente.



Como funciona a eletricidade
por Marshall Brain - traduzido por HowStuffWorks Brasil

Neste artigo
1. 

2. 
Voltagem, corrente e resistência

3. 

4. 

Voltagem, corrente e resistência

http://static.hsw.com.br/gif/light-bulb-intro.gif
Leve em consideração uma tomada de 120 volts e imagine que você liga um aquecedor de ambientes nessa tomada. Meça a quantidade de corrente fluindo da tomada para o aquecedor, e você verá que são 10 ampères. Isso significa que é um aquecedor de 1.200 watts.
Volts * ampères = watts
Então 120 volts * 10 amps = 1.200 watts.
Isso serve para qualquer aparelho elétrico. Se você conecta uma torradeirae ela usa 5 ampères, é uma torradeira de 600 watts. Se você conecta uma lâmpada e ela consome 1/2 ampère, é uma lâmpada de 60 watts.
Vamos supor que você ligue o aquecedor de ambientes, saia e observe omedidor de força. O objetivo do medidor de força é medir a quantidade de eletricidade utilizada em sua casa para que a companhia de luz possa cobrá-lo. Vamos supor que mais nada na casa esteja ligado, de maneira que o medidor esteja medindo apenas a eletricidade usada pelo aquecedor.
Seu aquecedor está usando 1.200 watts. Isto é 1,2 kilowatts, um kilowatt é 1.000 watts. Se você deixar o aquecedor ligado por uma hora, vai consumir 1,2 quilowatt/hora de força. Se a companhia de luz cobrar 10 centavos por quilowatt-hora, então sua conta será de 12 centavos por cada hora de uso do aquecedor.
1.2 quilowatts * 1 hora = 1.2 quilowatt-hora
1.2 quilowatt-hora * 10 centavos por quilowatt-hora = 12 centavos
Da mesma maneira, se você tiver uma lâmpada de 100 watts e deixá-la ligada por 10 reais horas, vai consumir 1 quilowatt-hora (100 watts * 10 horas = 1 quilowatt-hora).
Se você tem uma bomba de calor de 20.000 watts e a deixa ligada por cinco horas todos os dias, vai consumir 100 quilowatts-hora por dia (20 quilowatts * 5 horas = 100 quilowatt-hora) ou 10 dólares de luz por dia se um quilowatt-hora custar 10 centavos. Se fizer isso por um mês, sua bomba de calor custa (30 * R$ 10,00) R$ 300,00 por mês. É por isso que sua conta de luz fica tão alta quando o clima está muito frio. A bomba de calor consome muita energia.
As três unidades mais básicas em eletricidade são voltagem (V), corrente (I) e resistência (r). Como discutido antes, a voltagem é medida em volts, e a corrente é medida em ampères. A resistência é medida em ohms.
Podemos continuar com a analogia da água para entender sobreresistência. A voltagem é equivalente à pressão da água, a corrente é equivalente à taxa de fluxo e a resistência é como o tamanho do cano.
Há uma equação básica em engenharia elétrica que diz como os três termos são relacionados. Ela afirma que a corrente é igual a voltagem dividida pela resistência.
I = V/r
Vamos supor que você tenha um tanque de água pressurizada conectado a uma mangueira que está sendo usada para molhar o jardim. O que acontece se você aumentar a pressão no tanque? Pode-se supor que isso fará sair mais água da mangueira. O mesmo acontece em um sistema elétrico:aumentar a voltagem vai fazer mais corrente fluir.
Suponhamos que você aumente o diâmetro da mangueira e de todos os ajustes do tanque. Sabe que provavelmente isso também fará sair mais água da mangueira. É o mesmo que diminuir a resistência em um sistema elétrico, pois aumenta o fluxo de corrente.
Quando você olha para uma lâmpada incandescente normal, pode ver fisicamente essa analogia da água em ação. O filamento da lâmpada é um pedaço de fio muito fino. Este fio causa resistência ao fluxo de elétrons. Você pode calcular a resistência do fio com sua equação específica.
Vamos supor que você tenha uma lâmpada de 120 watts ligada em uma tomada. A voltagem é 120 volts e a lâmpada de 120 watts tem 1 ampère correndo através dela. Você poderá calcular a resistência do filamento reorganizando a equação: r = V/I. A resistência será então de 120 ohms. Caso seja uma lâmpada de 60 watts, a resistência irá para 240 ohms.
Corrente contínua x corrente alternada
Baterias, células de combustível e células solares produzem algo chamadocorrente contínua (CC). Os terminais de uma bateria são, respectivamente, positivo e negativo. A corrente contínua sempre flui no mesmo sentido entre eles (lembre-se que a corrente se desloca em sentido oposto ao dos elétrons).
A força que vem de uma usina de energia, por outro lado, é chamadacorrente alternada (CA). O sentido da corrente reverte, ou alterna, 60 vezes por segundo (nos EUA) ou 50 vezes por segundo (na Europa, por exemplo). A energia elétrica que está disponível nas tomadas dos Estados Unidos é de 120 volts, e com 60 ciclos para a CA.
A grande vantagem da corrente alternada para a rede elétrica é o fato de ser relativamente fácil mudar a voltagem, usando um aparelho chamadotransformador. Com o uso de voltagens muito altas para transmitir energia para longas distâncias, as companhias de luz economizam muito dinheiro. É assim que isso funciona.
Supondo que você tenha uma usina de energia que produza 1 milhão de watts de potência, uma maneira de transmitir essa potência seria enviar 1 milhão de ampères a 1 volt. Outra maneira seria enviar 1 ampère a 1 milhão de volts. Enviar 1 ampère exige apenas um fio fino e pouca energia é perdida na forma de calor durante a transmissão. O envio de 1 milhão de ampères exigiria um fio enorme.
Então, para transmissão de energia, as companhias de luz utilizam voltagens muito altas para transmissão (por exemplo 1 milhão de volts), depois diminuem novamente para voltagens mais baixas para a distribuição (por exemplo 1.000 volts) e, finalmente, diminuem para 120 volts dentro da casa, por segurança (veja Como funcionam as redes elétricas para mais detalhes).
Fio terra 
Quando o assunto é eletricidade, você sempre ouve falar do uso do fio terra, ou simplesmente terra. Por exemplo, uma informação no gerador elétrico dirá: "certifique-se de conectar um fio terra antes de usar" ou "não use sem aterramento apropriado".
Acontece que a companhia elétrica usa um dos fios do sistema de força ligado à terra. Ela é um excelente condutor, além de ser um ótimo caminho para o retorno dos elétrons. Aterramento na rede de distribuição elétrica, corresponde ao contato com a terra propriamente dita ou com o que estiver sob o solo.
O sistema de distribuição de força conecta-se com solo muitas vezes. Por exemplo, nesta foto você pode ver que um dos fios é destacado como um fio terra.
http://static.hsw.com.br/gif/power-parts.gif
Na foto abaixo, o fio exposto, vindo pela lateral do poste, conecta o fio terra aéreo diretamente ao chão.
http://static.hsw.com.br/gif/power-ground.jpg
Todos os postes de eletricidade no planeta têm um fio como esse. Se puder acompanhar a companhia de luz instalando um novo poste, verá que a ponta deste fio é grampeada em uma bobina na base do poste. Essa bobina fica em contado direto com o solo quando o poste é instalado e é enterrada de 1,8 a 3 m embaixo da terra. Se você examinar um poste cuidadosamente, verá que os fios terra entre os postes (e normalmente entre os fios de sustentação) estão ligados a essa conexão direta ao chão.  
A eletricidade pode ser usada de muitas maneiras diferentes. Confira os links na próxima página para explorar outras aplicações.


http://static.hsw.com.br/gif/power-ground.jpg
Todos os postes de eletricidade no planeta têm um fio como esse. Se puder acompanhar a companhia de luz instalando um novo poste, verá que a ponta deste fio é grampeada em uma bobina na base do poste. Essa bobina fica em contado direto com o solo quando o poste é instalado e é enterrada de 1,8 a 3 m embaixo da terra. Se você examinar um poste cuidadosamente, verá que os fios terra entre os postes (e normalmente entre os fios de sustentação) estão ligados a essa conexão direta ao chão.  
A eletricidade pode ser usada de muitas maneiras diferentes. Confira os links na próxima página para explorar outras aplicações.